

COLLEGE OF ENGINEERING AND TECHNOLOGY

(Affiliated to Osmania University & Approved by AICTE, New Delhi)

LABORATORY MANUAL

DATA MINING LABORATORY

BE VII Semester (CBCS): 2020-21

NAME:		
ROLL NO:		
BRANCH:	SEM:	

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERNG

Empower youth- Architects of Future World

METHODIST

COLLEGE OF ENGINEERING AND TECHNOLOGY

VISION

To produce ethical, socially conscious and innovative professionals who would contribute to sustainable technological development of the society.

MISSION

To impart quality engineering education with latest technological developments and interdisciplinary skills to make students succeed in professional practice.

To encourage research culture among faculty and students by establishing state of art laboratories and exposing them to modern industrial and organizational practices.

To inculcate humane qualities like environmental consciousness, leadership, social values, professional ethics and engage in independent and lifelong learning for sustainable contribution to the society.

METHODIST

COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LABORATORY MANUAL

DATA MINING LAB

Prepared By Mr. T. PRAVEEN KUMAR,

Assistant Professor.

VISION & MISSION

VISION

To become a leader in providing Computer Science & Engineering education with emphasis on knowledge and innovation.

MISSION

- To offer flexible programs of study with collaborations to suit industry needs.
- To provide quality education and training through novel pedagogical practices.
- To expedite high performance of excellence in teaching, research and innovations.
- To impart moral, ethical values and education with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES

After 3-5 years of graduation, the graduates will be able to

- **PEO1:** Apply technical concepts, Analyze, Synthesize data to Design and create novel products and solutions for the real life problems.
- **PEO2:** Apply the knowledge of Computer Science Engineering to pursue higher education with due consideration to environment and society.
- **PEO3:** Promote collaborative learning and spirit of team work through multidisciplinary projects
- **PEO4:** Engage in life-long learning and develop entrepreneurial skills.

PROGRAM OUTCOMES

Engineering graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

P07: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

At the end of 4 years, Computer Science and Engineering graduates at MCET will be able to:

PSO1: Apply the knowledge of Computer Science and Engineering in various domains like networking and data mining to manage projects in multidisciplinary environments.

PSO2: Develop software applications with open-ended programming environments.

PSO3: Design and develop solutions by following standard software engineering principles and implement by using suitable programming languages and platforms

Faculty of Engineering, O.U

CBCS Curriculum with effect from Academic Year 2019 - 2020

Course Code	Course Title				Core / Elective		
PC 753 CS	Data Mining Lab					Core	
Prerequisite	Contact Hours per Week				CIE	SEE	Credits
	L	Т	D	Р	CIE	SEE	Creans
-	-	-	-	2	25	50	1
Course Objectives			•	•	•		
> To introduce	e the basic	concents	of data Mi	ning and i	its applicati	one	

- To introduce the basic concepts of data Mining and its applications
- > To understand different data mining like classification, clustering and Frequent Pattern mining
- To introduce current trends in data mining

Course Outcomes

After completing this course, the student will be able to

- 1. Organize and Prepare the data needed for data mining using prepreprocessing techniques
- Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on a given data set
- 3. Define and apply metrics to measure the performance of various data mining algorithms

List of Experiments to be performed

- 1. Implement the following Multidimensional Data Models
 - a. Star Schema
 - b. Snowflake Schema
 - c. Fact Constellation
- 2. Implement Apriori algorithm to generate frequent item sets.
- 3. Implement the following clustering algorithms
 - a. K-means
 - b. K-medians
- 4. Implement the following classification algorithms
 - a. Decision Tree Induction
 - b. KNN
- 5. Perform data preprocessing using WEKA
- 6. Perform discretization using WEKA
- 7. Classification of algorithms using WEKA
- 8. Apriori algorithm using WEKA
- 9. Perform data transformations using an ETL Tool
- A small case study involving all stages of KDD (Datasets are available online like UCI Repository etc.)

METHODIST

COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING


Course Outcomes (CO's):

SUBJECT NAME : DATA MINING LAB

CODE : **PC 753 CS**

SEMESTER : VII

CO No.	Course Outcome	Taxonomy Level
PC 753 CS.1	Apply data preprocessing techniques	Applying
PC 753 CS.2	Apply Frequent Item-set Mining methods to generate association rules	Applying
PC 753 CS.3	Identify and perform appropriate classification for given dataset.	Applying
PC 753 CS.4	Categorize and apply appropriate clustering for given dataset.	Analyzing
PC 753 CS.5	Evaluate models/algorithms with respect to their accuracy.	Evaluating
PC 753 CS.6	Construct a data mining solution to a practical problem	Creating

- 1. Students are advised to come to the laboratory at least 5 minutes before (to starting time), those who come after 5 minutes will not be allowed into the lab.
- 2. Plan your task properly much before to the commencement, come prepared to the lab with the program / experiment details.
- 3. Student should enter into the laboratory with:
 - Laboratory observation notes with all the details (Problem statement, Aim, Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab session.
 - b. Laboratory Record updated up to the last session experiments.
 - c. Formal dress code and Identity card.
- 4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system allotted to you by the faculty.
- 5. Execute your task in the laboratory, and record the results / output in the lab observation note book, and get certified by the concerned faculty.
- 6. All the students should be polite and cooperative with the laboratory staff, must maintain the discipline and decency in the laboratory.
- 7. Computer labs are established with sophisticated and high end branded systems, which should be utilized properly.
- 8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions. Misuse of the equipment, misbehaviours with the staff and systems etc., will attract severe punishment.
- 9. Students must take the permission of the faculty in case of any urgency to go out. If anybody found loitering outside the lab / class without permission during working hours will be treated seriously and punished appropriately.
- 10. Students should SHUT DOWN the computer system before he/she leaves the lab after completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept properly.

Head of the Department

CODE OF CONDUCT FOR THE LABORATORY

- All students must observe the dress code while in the laboratory
- Footwear is NOT allowed
- Foods, drinks and smoking are NOT allowed
- All bags must be left at the indicated place
- The lab timetable must be strictly followed
- Be PUNCTUAL for your laboratory session
- All programs must be completed within the given time
- Noise must be kept to a minimum
- Workspace must be kept clean and tidy at all time
- All students are liable for any damage to system due to their own negligence
- Students are strictly PROHIBITED from taking out any items from the laboratory
- Report immediately to the lab programmer if any damages to equipment

BEFORE LEAVING LAB:

- Arrange all the equipment and chairs properly.
- Turn off / shut down the systems before leaving.
- Please check the laboratory notice board regularly for updates.

Lab In – charge

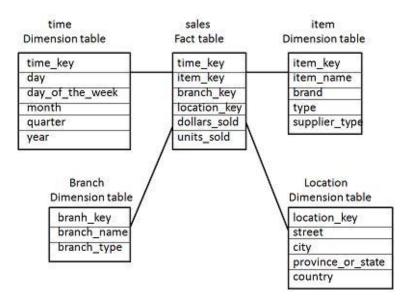
LIST OF EXPERIMENTS

SI. No.	Name of the Experiment	Date of Experiment	Date of Submission	Page No	Faculty Signature
1.	Implement the following Multidimensional Data Models i. Star Schema ii. Snowflake Schema iii. Fact Constellation			1	
2.	Implement Apriori algorithm to generate frequent Item Sets			5	
3.	Implement the following clustering algorithms i. K-means ii. K-mediods			11	
4.	Implement the following classification algorithms i. Decision Tree Induction ii. KNN			17	
5.	Perform data Preprocessing using WEKA			25	
6.	Perform Discritization of data using WEKA			29	
7.	Classification algorithms using WEKA			46	
8.	Apriori algorithm using WEKA			58	
9.	Perform data transformations using an ETL Tool			60	
10.	A small case study involving all stages of KDD. (Datasets are available online like UCI Repository etc.)			66	

ADDITIONAL EXPERIMENTS

SI. No.	Name of the Experiment	Date of Experiment	Date of Submission	Page No	Faculty Signature
1	Data Manipulation in R			78	
2.	Classification in R			81	

PROGRAM 1.

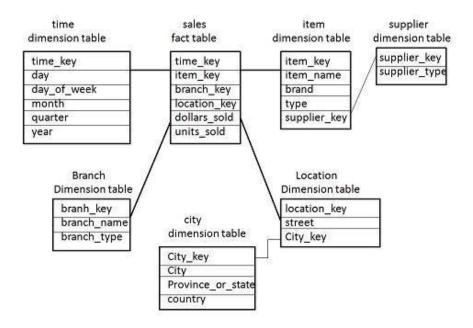

Aim : Implement the following Multidimensional Data Models

i. Star Schema ii. Snowflake Schema iii. Fact Constellation

Schema is a logical description of the entire database. It includes the name and description of records of all record types including all associated data-items and aggregates. Much like a database, a data warehouse also requires to maintain a schema. A database uses relational model, while a data warehouse uses Star, Snowflake, and Fact Constellation schema. In this chapter, we will discuss the schemas used in a data warehouse.

Star Schema

- Each dimension in a star schema is represented with only one-dimension table.
- This dimension table contains the set of attributes.
- The following diagram shows the sales data of a company with respect to the four dimensions, namely time, item, branch, and location.

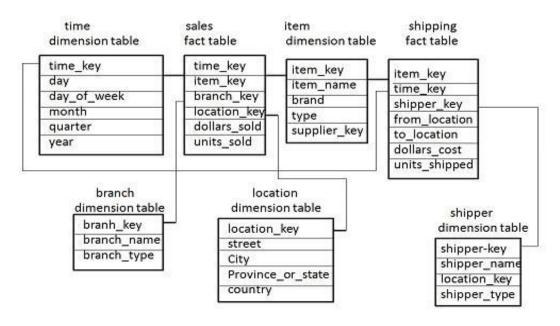

- There is a fact table at the center. It contains the keys to each of four dimensions.
- The fact table also contains the attributes, namely dollars sold and units sold.

Note: Each dimension has only one dimension table and each table holds a set of attributes. For example, the location dimension table contains the attribute set {location_key, street, city, province_or_state,country}. This constraint may cause data redundancy. For example, "Vancouver" and "Victoria" both the cities are in the Canadian province of British Columbia. The entries for such cities may cause data redundancy along the attributes province_or_state and country.

Snowflake Schema

- Some dimension tables in the Snowflake schema are normalized.
- The normalization splits up the data into additional tables.

• Unlike Star schema, the dimensions table in a snowflake schema are normalized. For example, the item dimension table in star schema is normalized and split into two dimension tables, namely item and supplier table.



- Now the item dimension table contains the attributes item_key, item_name, type, brand, and supplier-key.
- The supplier key is linked to the supplier dimension table. The supplier dimension table contains the attributes supplier_key and supplier_type.

<b<>Note: Due to normalization in the Snowflake schema, the redundancy is reduced and therefore, it becomes easy to maintain and the save storage space.

Fact Constellation Schema

- A fact constellation has multiple fact tables. It is also known as galaxy schema.
- The following diagram shows two fact tables, namely sales and shipping.

- The sales fact table is same as that in the star schema.
- The shipping fact table has the five dimensions, namely item_key, time_key, shipper_key, from_location, to_location.
- The shipping fact table also contains two measures, namely dollars sold and units sold.
- It is also possible to share dimension tables between fact tables. For example, time, item, and location dimension tables are shared between the sales and shipping fact table.

Schema Definition

Multidimensional schema is defined using Data Mining Query Language (DMQL). The two primitives, cube definition and dimension definition, can be used for defining the data warehouses and data marts.

Syntax for Cube Definition

define cube < cube_name > [< dimension-list > }: < measure_list >

Syntax for Dimension Definition

define dimension < dimension_name > as (< attribute_or_dimension_list >)

Star Schema Definition

The star schema can be defined using Data Mining Query Language (DMQL) as follows:

define cube sales star [time, item, branch, location]:

dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year) define dimension item as (item key, item name, brand, type, supplier type) define dimension branch as (branch key, branch name, branch type) define dimension location as (location key, street, city, province or state, country)

Snowflake Schema Definition

Snowflake schema can be defined using DMQL as follows:

define cube sales snowflake [time, item, branch, location]:

dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year) define dimension item as (item key, item name, brand, type, supplier (supplier key, supplier type)) define dimension branch as (branch key, branch name, branch type) define dimension location as (location key, street, city (city key, city, province or state, country))

Fact Constellation Schema Definition

Fact constellation schema can be defined using DMQL as follows:

define cube sales [time, item, branch, location]:

dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year) define dimension item as (item key, item name, brand, type, supplier type) define dimension branch as (branch key, branch name, branch type) define dimension location as (location key, street, city, province or state,country) define cube shipping [time, item, shipper, from location, to location]:

dollars cost = sum(cost in dollars), units shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper key, shipper name, location as location in cube sales, shipper type)

define dimension from location as location in cube sales

define dimension to location as location in cube sales

Viva Voce

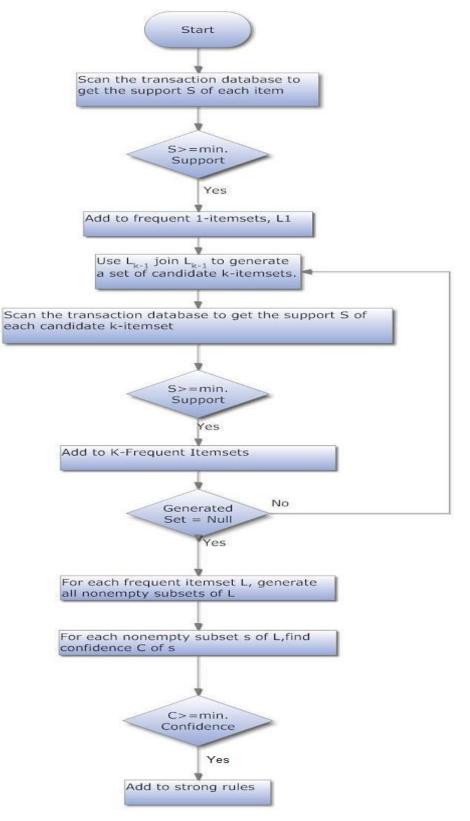
- 1) Define Schema
- 2) Define dimension table and fact table
- 3) What is a star schema?
- 4) Define fact-less fact.
- 5) What is a data cube?
- 6) What is a snow flake schema?
- 7) What is the language that is used for schema definition?
- 8) What is a data warehouse?
- 9) What is a data mart?
- 10) What is a Fact Constellation schema?

PROGRAM 2.

Aim : Implement Apriori algorithm to generate frequent Item Sets

Introduction:

Apriori is an algorithm for frequent item set mining and association rule learning over transactional databases. It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database. The frequent item sets determined by Apriori can be used to determine association rules which highlight general trends in the database: this has applications in domains such as market basket analysis.


Working:

Apriori is designed to operate on databases containing transactions (for example, collections of items bought by customers, or details of a website frequentation). Other algorithms are designed for finding association rules in data having no transactions (Winepi and Minepi), or having no timestamps (DNA sequencing). Each transaction is seen as a set of items (an itemset). Given a threshold C, the Apriori algorithm identifies the item sets which are subsets of at least C transactions in the database.

Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as candidate generation), and groups of candidates are tested against the data. The algorithm terminates when no further successful extensions are found.

Apriori uses breadth-first search and a Hash tree structure to count candidate item sets efficiently. It generates candidate item sets of length k from item sets of length k - 1. Then it prunes the candidates which have an infrequent sub pattern. According to the downward closure lemma, the candidate set contains all frequent k-length item sets. After that, it scans the transaction database to determine frequent item sets among the candidates.

Low Level Design

Program:

```
import java.io.*;
class apriori
{
public static void main(String []arg)throws IOException
int i,j,m=0;
int t1=0:
BufferedReader b=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter the number of transaction :");
int n=Integer.parseInt(b.readLine());
System.out.println("items :1--Milk 2--Bread 3--Coffee 4--Juice 5--Cookies 6--Jam");
int item[][]=new int[n][6];
for(i=0;i<n;i++)
for(j=0;j<6;j++)
 item[i][j]=0;
String[] itemlist={"MILK","BREAD","COFFEE","JUICE","COOKIES","JAM"};
int nt[]=new int[6];
int q[]=new int[6];
for(i=0;i<n;i++)
{ System.out.println("Transaction "+(i+1)+" :");
 for(j=0;j<6;j++)
 { //System.out.println(itemlist[j]);
   System.out.println("Is Item "+itemlist[j]+" present in this transaction(1/0)? :");
   item[i][j]=Integer.parseInt(b.readLine());
 }
}
for(j=0;j<6;j++)
 { for(i=0;i<n;i++)
  \{if(item[i][j]==1)\}
   nt[j]=nt[j]+1;
  }
  System.out.println("Number of Item "+itemlist[j]+" :"+nt[j]);
 }
for(j=0;j<6;j++)
\{ if(((nt[i]/(float)n)*100) >= 50) \}
  q[i]=1;
 else
  q[j]=0;
 if(q[j]==1)
  {t1++;
  System.out.println("Item "+itemlist[j]+" is selected ");
  }
}
for(j=0;j<6;j++)
 { for(i=0;i<n;i++)
  ł
```

```
if(q[j]==0)
    ł
    item[i][j]=0;
  ł
  }
int nt1[][]=new int[6][6];
for(j=0;j<6;j++)
  { for(m=j+1;m<6;m++)
    { for(i=0;i<n;i++)
     { if(item[i][j]==1 &&item[i][m]==1)
       { nt1[j][m]=nt1[j][m]+1;
       }
     }
  if(nt1[j][m]!=0)
     System.out.println("Number of Items of "+itemlist[j]+"& "+itemlist[m]+" :"+nt1[j][m]);
  }
  }
for(j=0;j<6;j++)
{ for(m=j+1;m<6;m++)
 {
         if(((nt1[j][m]/(float)n)*100)>=50)
                q[j]=1;
         else
                q[j]=0;
         if(q[j]==1)
         ł
                System.out.println("Item "+itemlist[j]+"& "+itemlist[m]+" is selected ");
         }
 }
}
}
}
```

```
Expected Output:
```

C:\>javac apriori.java

C:\>java apriori Enter the number of transaction : 4 items :1--Milk 2--Bread 3--Coffee 4--Juice 5--Cookies 6--Jam Transaction 1 : Is Item MILK present in this transaction(1/0)? :1 Is Item BREAD present in this transaction(1/0)? :1 Is Item COFFEE present in this transaction(1/0)? :0 Is Item JUICE present in this transaction(1/0)? :1 Is Item COOKIES present in this transaction(1/0)? :1 Is Item JAM present in this transaction(1/0)? :0

Transaction 2 : Is Item MILK present in this transaction(1/0)? :1 Is Item BREAD present in this transaction(1/0)? :0 Is Item COFFEE present in this transaction(1/0)? :0 Is Item JUICE present in this transaction(1/0)? :1 Is Item COOKIES present in this transaction(1/0)? :0 Is Item JAM present in this transaction(1/0)? :0 Transaction 3 : Is Item MILK present in this transaction(1/0)? :1 Is Item BREAD present in this transaction(1/0)? :0 Is Item COFFEE present in this transaction(1/0)? :0 Is Item JUICE present in this transaction(1/0)? :0 Is Item COOKIES present in this transaction(1/0)? :0 Is Item JAM present in this transaction(1/0)? :1 Transaction 4 : Is Item MILK present in this transaction(1/0)? :0 Is Item BREAD present in this transaction(1/0)? :1 Is Item COFFEE present in this transaction(1/0)? :1 Is Item JUICE present in this transaction(1/0)? :0 Is Item COOKIES present in this transaction(1/0)? :1 Is Item JAM present in this transaction(1/0)? :0 Number of Item MILK:3 Number of Item BREAD :2 Number of Item COFFEE :1 Number of Item JUICE :2 Number of Item COOKIES :2 Number of Item JAM :1 Item MILK is selected Item BREAD is selected Item JUICE is selected Item COOKIES is selected Number of Items of MILK& BREAD :1 Number of Items of MILK& COFFEE :0 Number of Items of MILK& JUICE :2 Number of Items of MILK& COOKIES :1 Number of Items of MILK& JAM :0 Number of Items of BREAD& COFFEE :0 Number of Items of BREAD& JUICE :1 Number of Items of BREAD& COOKIES :2 Number of Items of BREAD& JAM :0 Number of Items of COFFEE& JUICE :0 Number of Items of COFFEE& COOKIES :0 Number of Items of COFFEE& JAM :0 Number of Items of JUICE& COOKIES :1 Number of Items of JUICE& JAM :0 Number of Items of COOKIES& JAM :0 Item MILK& JUICE is selected

Item BREAD& COOKIES is selected

Viva Voce

- 1) Define Apriori property
- 2) What are the two steps of Apriori algorithm?
- 3) Define support and confidence in Association rule mining.
- 4) What is Association rule?
- 5) What are the Applications of Association rule mining?
- 6) How are association rules mined from large databases?
- 7) What is pruning
- 8) How is apriori property used in algorithm
- 9) Define frequent item set
- 10) What are the limitations of Apriori Algorithm

PROGRAM 3:

Aim : Implement the following clustering algorithms

i. K-means ii. K-mediods

K-Means Clustering Algorithm

K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering problems in machine learning or data science. In this topic, we will learn what is K-means clustering algorithm, how the algorithm works, along with the Python implementation of k-means clustering.

K-Means Clustering is an <u>Unsupervised Learning algorithm</u>, which groups the unlabeled dataset into different clusters. Here K defines the number of pre-defined clusters that need to be created in the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.

It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way that each dataset belongs only one group that has similar properties.

It allows us to cluster the data into different groups and a convenient way to discover the categories of groups in the unlabeled dataset on its own without the need for any training.

It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of this algorithm is to minimize the sum of distances between the data point and their corresponding clusters.

The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters, and repeats the process until it does not find the best clusters. The value of k should be predetermined in this algorithm.

The k-means clustering algorithm mainly performs two tasks:

- Determines the best value for K center points or centroids by an iterative process.
- Assigns each data point to its closest k-center. Those data points which are near to the particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters.

The working of the **<u>K-Means algorithm</u>** is explained in the below steps:

Step-1: Select the number K to decide the number of clusters.

Step-2: Select random K points or centroids. (It can be other from the input dataset).

Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters.

Step-4: Calculate the variance and place a new centroid of each cluster.

Step-5: Repeat the third steps, which means reassign each datapoint to the new closest centroid of each cluster.

Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.

Step-7: The model is ready.

Program:

```
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
public class Kmeans {
 public static class Instance {
ArrayList<Double> mAttributes = new ArrayList<>();
String mClass;
 @Override
public String toString() {
return mAttributes.toString() + "\t" + mClass;
         }
 }
public static class Cluster {
         String name;
ArrayList<Double> oldCentroid = new ArrayList<>();
ArrayList<Double> newCentroid = new ArrayList<>();
   public boolean isStillMoving() {
         double difference = 0.0;
         for (int i = 0; i < oldCentroid.size(); i++) {
              difference += Math.abs(oldCentroid.get(i) - newCentroid.get(i));
         }
         return (difference > 0.1);
   ł
}
private static String mInputFilename;
private static String mOutputFilename;
```

private static ArrayList<Instance> instances = new ArrayList<>(); private static ArrayList<Cluster> clusters = new ArrayList<>();

```
private static int clusterCount;
private static int iteration = 0;
public static void main(String[] args) throws IOException {
  if (args.length < 3) {
         System.out.println("Arguments are incorrect. Try Application #inputfilename
   #outputfilename #clusterCount");
         System.exit(0);
   }
    else {
         mInputFilename = args[0];
         mOutputFilename = args[1];
         clusterCount = Integer.parseInt(args[2]);
         readData();
         cluster();
         ArrayList<String> output = new ArrayList<>();
         output.add("ITERATIONS : " + iteration);
         for (Instance i : instances) {
                output.add(i.toString());
         }
         PutFileData(output);
    }
 }
 // random number generator in a range, upper bound not included
 public static int randInt(int min, int max) {
         Random random = new Random();
         return random.nextInt((max - min)) + min;
 }
 public static void cluster() {
         do {
                 System.out.println(++iteration);
                 if (iteration == 1) {
                        // initialize clusters
                    for (int i = 0; i < clusterCount; i++) {
                        Cluster c = new Cluster();
                        c.name = i + "";
                        c.oldCentroid.addAll(instances.get(i).mAttributes);
                        clusters.add(c);
                     }
                 } else {
                        // copy new mean to old
                        for (int i = 0; i < \text{clusterCount}; i++) {
                                clusters.get(i).oldCentroid.clear();
                        clusters.get(i).oldCentroid.addAll(clusters.get(i).newCentroid);
                         }
                 }
                // assign instances
                 for (Instance i : instances) {
```

ļ

```
ArrayList<Double> distances = new ArrayList<>();
                 for (Cluster c : clusters) {
                         distances.add(getDistance(i.mAttributes, c.oldCentroid));
                 i.mClass = clusters.get(distances.indexOf(Collections.min(distances))).name;
         }
         // calc new mean
         for (int j = 0; j < \text{clusterCount}; j++) {
         ArrayList<Double> centroid = new ArrayList<>();
         for (int i = 0; i < clusters.get(j).oldCentroid.size(); i++) {
                 double sum = 0.0;
                 int count = 0;
                 for (Instance inst : instances) {
                         if (inst.mClass.equals(clusters.get(j).name)) {
                                sum += inst.mAttributes.get(i);
                                count++;
                         }
                 }
                 centroid.add(sum / count);
         }
         clusters.get(j).newCentroid.clear();
         clusters.get(j).newCentroid.addAll(centroid);
 }
} while (isStillMoving()&& iteration < 10);
 public static boolean isStillMoving(){
         for(int i=0;i<clusterCount;i++){</pre>
                 if(clusters.get(i).isStillMoving()){
                        return true;
                 }
         return false;
 }
 public static double getDistance(ArrayList<Double> a, ArrayList<Double> b) {
         double distance = 0;
         for (int i = 0; i < a.size(); i++) {
                 double x = a.get(i);
                 double y = b.get(i);
                 distance += (x - y) * (x - y);
         }
         return Math.sqrt(distance);
 }
 // get data
 public static void readData() throws IOException {
         StringTokenizer st;
         int size;
```

```
ArrayList<String> line;
        line = GetFileData();
        for (String str : line) {
                Instance value = new Instance();
                st = new StringTokenizer(str, ",");
                size = st.countTokens();
                for (int i = 0; i < size; i++) {
                        value.mAttributes.add(Double.parseDouble(st.nextToken()));
                }
                instances.add(value);
         }
 }
 // File read write functions
 public static ArrayList<String> GetFileData() throws IOException {
         String line;
         ArrayList<String> fileData = new ArrayList<String>();
         BufferedReader bufferedReader = new BufferedReader(new FileReader(
                       mInputFilename));
         while ((line = bufferedReader.readLine()) != null) {
                fileData.add(line);
         }
         bufferedReader.close();
         return fileData;
 }
 public static void PutFileData(ArrayList<String> output) throws IOException {
         File f = new File(mOutputFilename);
         if (!f.exists()) {
                f.createNewFile();
         }
         BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(
                        mOutputFilename, true));
        bufferedWriter.newLine();
         for (String line : output) {
                bufferedWriter.write(line);
                bufferedWriter.newLine();
        bufferedWriter.close();
 }
}
```

Expected Output:

Training data

output

File Edit Format View Help 3,30 8,57 9,64 13,72 3,36 6,43 11,59 21,90 1,20
8,57 9,64 13,72 3,36 6,43 11,59 21,90
1,20 16,83

joutput - Notepad	
ITERATIONS : 3 [3.0, 30.0] 0 [8.0, 57.0] 1 [9.0, 64.0] 1 [13.0, 72.0] 2 [3.0, 36.0] 0 [6.0, 43.0] 0 [11.0, 59.0] 1 [21.0, 90.0] 2 [1.0, 20.0] 0 [16.0, 83.0] 2	

Viva Voce

- 1) What is Clustering?
- 2) What are different types of clustering?
- 3) How does the K mean algorithm work
- 4) Define unsupervised Learning
- 5) How to determine the number of clusters in k-means clustering algorithm?
- 6) What are the fields in which clustering techniques are used?
- 7) What are the different types of data used for cluster analysis?
- 8) What are the requirements of cluster analysis?
- 9) What do you mean by partitioning method?
- 10) What are the requirements of cluster analysis?

PROGRAM 4.

Aim : Implement the following classification algorithms

- i. Decision Tree Induction
- ii. KNN

i. Decision Tree Induction

Decision tree learning, used in data mining and machine learning, uses a decision tree as a predictive model which maps observations about an item to conclusions about the item's target value. More descriptive names for such tree models are classification trees or regression trees. In these tree structures, leaves represent classifications and branches represent conjunctions of features that lead to those classifications.

In decision analysis, a decision tree can be used to visually and explicitly represent

decisions and decision making. In data mining, a decision tree describes data but not decisions; rather the resulting classification tree can be an input for decision making.

- Basic steps
- Building tree
- Applying the tree to database

Internal node-test on attribute

Branch-outcome of test

Leaf node-class

Topmost-root node

Algorithm: Generate decision tree. Generate a decision tree from the training tuples of data partition, *D*.

Input:

- > Data partition, D, which is a set of training tuples and their associated class labels;
- *attribute list*, the set of candidate attributes;
- Attribute selection method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a *splitting attribute* and, possibly, either a *split-point* or *splitting subset*.

Output: A decision tree.

Method / Algorithm:

- (1) create a node *N*;
- (2) if tuples in D are all of the same class, C, then
- (3) return N as a leaf node labeled with the class C;
- (4) **if** *attribute list* is empty **then**

(5) return N as a leaf node labeled with the majority class in D; // majority voting

(6) apply **Attribute selection method**(*D*, *attribute list*) to **find** the "best" *splitting criterion*;

(7) label node *N* with *splitting criterion*;

(8) **if** *splitting attribute* is discrete-valued **and** multiway splits allowed **then** // not restricted to binary trees

(9) *attribute list attribute list* \square *splitting attribute;* // remove *splitting attribute*

(10) **for each** outcome *j* of *splitting criterion*

// partition the tuples and grow subtrees for each partition

(11) let Dj be the set of data tuples in D satisfying outcome j; // a partition

(12) if Dj is empty then

(13) attach a leaf labeled with the majority class in D to node N;

(14) **else** attach the node returned by **Generate decision tree**(*Dj*, *attribute list*) to node *N*;

Endfor

(15) return *N*;

ii. KNN

K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which can be used for both classification as well as regression predictive problems. However, it is mainly used for classification predictive problems in industry. The following two properties would define KNN well –

- Lazy learning algorithm KNN is a lazy learning algorithm because it does not have a specialized training phase and uses all the data for training while classification.
- Non-parametric learning algorithm KNN is also a non-parametric learning algorithm because it doesn't assume anything about the underlying data.

Working of KNN Algorithm

K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. We can understand its working with the help of following steps –

Step 1 - For implementing any algorithm, we need dataset. So during the first step of KNN, we must load the training as well as test data.

Step 2 - Next, we need to choose the value of K i.e. the nearest data points. K can be any integer.

Step 3 – For each point in the test data do the following –

- **3.1** Calculate the distance between test data and each row of training data with the help of any of the method namely: Euclidean, Manhattan or Hamming distance. The most commonly used method to calculate distance is Euclidean.
- **3.2** Now, based on the distance value, sort them in ascending order.
- **3.3** Next, it will choose the top K rows from the sorted array.
- **3.4** Now, it will assign a class to the test point based on most frequent class of **these** rows.

Step 4 – End

Program:

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import java.util.StringTokenizer;

```
public class KNNClassifier {
```

```
private static class Instance {
    ArrayList<Double> mAttributes = new ArrayList<>();
    String mClass;
    @Override
    public String toString() {
        return mAttributes.toString() + "\t" + mClass;
    }
}
private static class PredictInstance extends Instance {
```

```
ArrayList<Double> mDistances = new ArrayList<>();
ArrayList<Integer> mNeighbours = new ArrayList<>();
ArrayList<Double> mVote = new ArrayList<>();
```

}

private static String mInputFilename;

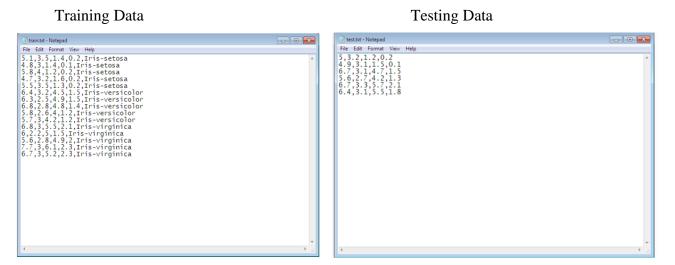
private static String mInputTestFilename;

private static String mOutputFilename; private static int K; private static String[] classNames = { "iris-setosa", "iris-versicolor", "iris-virgnica" }; private static List<Instance>mTrainData; private static List<PredictInstance>mPredictData; public static void main(String[] args) throws IOException { if (args.length < 4) { System.out.println("Arguments are incorrect. Try Application #inputfilename #testfilename #outputfilename #k-value"); System.exit(0); } else { mInputFilename = args[0]; mInputTestFilename = args[1]; mOutputFilename = args[2]; K = Integer.parseInt(args[3]); readData(); classify(); ArrayList<String> output = new ArrayList<>(); for (PredictInstance t : mPredictData) { output.add(t.toString()); } PutFileData(output); } } public static void classify() { // compute distances for all test instances for (PredictInstance t : mPredictData) { for (Instance i : mTrainData) { t.mDistances.add(getDistance(t.mAttributes, i.mAttributes)); } } // sorting the distances and getting k-nearest class frequency for (PredictInstance t : mPredictData) {

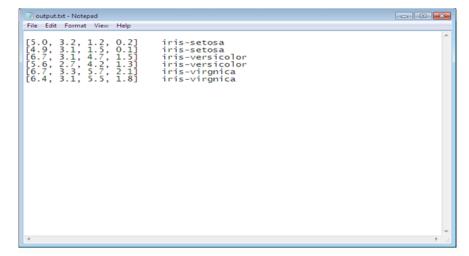
```
t.mNeighbours.addAll(getNearestNeighbours(t.mDistances));
       for (Integer i : t.mNeighbours) {
               if(mTrainData.get(i).mClass.equalsIgnoreCase(classNames[0])) {
                              t.mVote.set(0, t.mVote.get(0) + (1 / t.mDistances.get(i)));
               } else if (mTrainData.get(i).mClass.equalsIgnoreCase(classNames[1])) {
                      t.mVote.set(1, t.mVote.get(1) + (1 / t.mDistances.get(i)));
               } else {
               t.mVote.set(2, t.mVote.get(2) + (1 / t.mDistances.get(i)));
               }
       }
      }
       // comparing weights and selecting a class
       for (PredictInstance t : mPredictData) {
               t.mClass = classNames[t.mVote.indexOf(Collections.max(t.mVote))];
       }
}
public static ArrayList<Integer> getNearestNeighbours(ArrayList<Double> distances) {
       ArrayList<Integer> indexes = new ArrayList<>(K);
       ArrayList<Double> values = new ArrayList<>();
       values.addAll(distances);
       Collections.sort(values);
       for (int i = 0; i < K; i++) {
               indexes.add(distances.indexOf(values.get(i)));
       }
       return indexes;
}
public static double getDistance(ArrayList<Double> a, ArrayList<Double> b) {
       double distance = 0;
       for (int i = 0; i < a.size(); i++) {
               double x = a.get(i);
               double y = b.get(i);
               distance += (x - y) * (x - y);
       }
       return Math.sqrt(distance);
```

```
}
```

}


```
// get data
public static void readData() throws IOException {
       StringTokenizer st;
       mTrainData = new ArrayList<>();
       mPredictData = new ArrayList<>();
       int size;
       ArrayList<String> line;
       line = GetFileData();
       for (String str : line) {
               Instance value = new Instance();
               st = new StringTokenizer(str, ",");
               size = st.countTokens();
               for (int i = 0; i < size - 1; i++) {
                       value.mAttributes.add(Double.parseDouble(st.nextToken()));
               }
               value.mClass = st.nextToken();
               mTrainData.add(value);
       }
       line = GetTestFileData();
       for (String str : line) {
               PredictInstance value = new PredictInstance();
               st = new StringTokenizer(str, ",");
               size = st.countTokens();
               for (int i = 0; i < size; i++) {
                       value.mAttributes.add(Double.parseDouble(st.nextToken()));
               }
               value.mClass = "unknown";
               for (int j = 0; j < classNames.length; j++) {
                       value.mVote.add(0.0);
               }
               mPredictData.add(value);
       }
// File read write functions
public static ArrayList<String> GetFileData() throws IOException {
```

```
String line;
        ArrayList<String> fileData = new ArrayList<String>();
        BufferedReader bufferedReader = new BufferedReader(new FileReader(
                       mInputFilename));
        while ((line = bufferedReader.readLine()) != null) {
                fileData.add(line);
        }
        bufferedReader.close();
        return fileData;
 }
 public static ArrayList<String> GetTestFileData() throws IOException {
        String line;
        ArrayList<String> fileData = new ArrayList<String>();
        BufferedReader bufferedReader = new BufferedReader(new FileReader(
                       mInputTestFilename));
        while ((line = bufferedReader.readLine()) != null) {
                fileData.add(line);
        }
        bufferedReader.close();
        return fileData;
 }
 public static void PutFileData(ArrayList<String> output) throws IOException {
        File f = new File(mOutputFilename);
        if (!f.exists()) {
                f.createNewFile();
        }
BufferedWriter bufferedWriter = newBufferedWriter(new FileWriter(
                       mOutputFilename, true));
        bufferedWriter.newLine();
        for (String line : output) {
                bufferedWriter.write(line);
                bufferedWriter.newLine();
        }
        bufferedWriter.close();
```

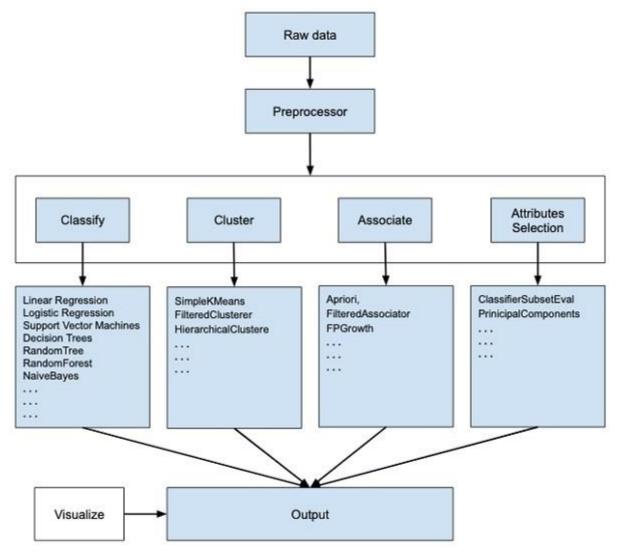

```
}
```

}

Expected Output:

Output.txt

Viva Voce


- 1) Define classifier
- 2) How does classification work
- 3) When do we classify the data
- 4) what are the applications of KNN Classifier
- 5) How to select the value of K in the K-NN Algorithm?
- 6) what are the advantages of KNN Algorithm ?
- 7) what are the design issues of Decision Tree Induction
- 8) How to build a decision Tree
- 9) How should the training records be split
- 10) How should the splitting procedure stops
- 11) Define classification

PROGRAM 5 & 6.

Aim : Perform data preprocessing and discretization using WEKA.

Description (for Programs 5, 6, 7 and 8):

WEKA - an open source software provides tools for data preprocessing, implementation of several Data Mining and Machine Learning algorithms, and visualization tools so that you can develop Data Mining and Machine Learning techniques and apply them to real-world data mining problems. What WEKA offers is summarized in the following diagram –

If you observe the beginning of the flow of the image, you will understand that there are many stages in dealing with Data to make it suitable for Data Mining and Machine Learning

First, you will start with the raw data collected from the field. This data may contain several null values and irrelevant fields. You use the data preprocessing tools provided in WEKA to cleanse the data.

Then, you would save the preprocessed data in your local storage for applying Data Mining and Machine Learning algorithms.

Next, depending on the kind of Data Mining that you are trying to develop you would select one of the options such as **Classify, Cluster**, or **Associate**. The **Attributes Selection** allows the automatic selection of features to create a reduced dataset.

Note that under each category, WEKA provides the implementation of several algorithms. You would select an algorithm of your choice, set the desired parameters and run it on the dataset.

Then, WEKA would give you the statistical output of the model processing. It provides you a visualization tool to inspect the data.

The various models can be applied on the same dataset. You can then compare the outputs of different models and select the best that meets your purpose.

Thus, the use of WEKA results in a quicker development of Data Mining and Machine Learning models on the whole.

Program 5 & 6:

<u>1. ADD</u>

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

Ť			
🖉 Weka Explorer			
Preprocess Classify Cluster Associate Select at	ttributes Visualize		
Open file Open URL C	Open DB Generate	Undo Edit	Save
Filter			
Choose None			Apply
	Selected att		
Current relation Relation: None	Attributes: None Name: N		Type: None
Instances: None	Sum of weights: None Missing: N		Unique: None
Attributes			
All None Invert	Pattern		
]
			Visualize All
Remove			
Status			
Welcome to the Weka Explorer			Log 💉 X O

3. Click on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. Weather.arff). You get the following:

Undo (ibute itlook (0%) Dis		Save Apply ype: Nominal
itlook		
itlook		vne: Nominal
	tinct: 3 Unio	que: 0 (0%)
Label	Count	Weight
sunny	5	5.0
overcast	4	4.0
rainy	5	5.0
lom)	•	Visualize All
		1
	5	20
4		
		Log

4. **<u>VALIDATION</u>**: Click on Choose and select filters/unsupervised/attribute/Add.

Preprocess Classify Cluster Associate Select a	attributes	Visualize			
Open fi Open Open	Gener	a] [Undo	Edit	Save
퉲 weka	*	1			Apply
AllFilter MultiFilter supervised		lelected at Name: o Missing: 0	utlook	istinct: 3	Type: Nominal Unique: 0 (0%)
		No.	Label	Count	Weight
Add	E	1	sunny	5	5.0
		2	overcast	4	4.0
AddCluster		3	rainy	5	5.0
AddExpression AddID AddNoise AddValues	ass: play (Nom) Visualize Al				
Center ChangeDateFormat ClassAssigner		5	4		5
ClusterMembership					
 Discretize FirstOrder InterquartileRange 				Log	
KeroolEilter				250	100 T. 420

Then click on the area right of the Choose button. You get the following:

eka.filters.unsu	ipervised.attribute.Add	
About An instance	filter that adds a new attribute to the dataset.	More Capabilities
attributeIndex	last	
attributeNa <mark>m</mark> e	unnamed	
attributeType	Numeric attribute	
dateFormat	yyyy-MM-dd'T'HH:mm:ss	
nominalLabels		
	yyyy-MM-dd'T'HH:mm:ss	

You see here the default parameters of this filter. Click on More to get more information about these parameters.

5. Click on the Apply button to do the Addition and see how it is Added in the Selected attribute window.

Preprocess Classify Cluster Associate	Select	attributes Visualize		
Ope Ope Ope	Ge	n Undo	Edit	Sav
Filter				
Choose Add -N unnamed -C last				Apply
Current relation Relation: weathe Attributes Instances: 14 Sum of weights		Selected attribute Name: unname Missing: 14 (1	10-1 U.D. 1952-1253	T <mark>y</mark> pe: N Inique: 0
Attributes		Statistic	Value	
		Minimum	NaN	
		Maximum	NaN	
No. Name		Mean	NaN	
2 temperature	-	Class: unnamed (Nu	im) 🔸 🗍	Visualize All
3 humidity				
4 windy	=			
5 play				
6 🔲 unnamed				
Remove		0		
		NaN	NaN	Na

6. Try other parameters for the filter and see how the Addition changes. Don't forget to reload the original (numeric) relation or Undo the Addition before applying another one.

2. Discretization

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

open file Open URL	ct attributes Visualize Open DB Gener	ate Und	o Edit	Save
ilter Choose None				Apply
urrent relation Relation: None Instances: None	Attributes: None Sum of weights: None	Selected attribute Name: None Missing: None	Distinct: None	Type: None Unique: None
All None In	vert Pattern			
Remove				Visualize All

3. <u>VALIDATION</u>: on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. Wether.arff). You get the following:

🕝 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gene	rate Undo Edit Save
Filter	
Choose None	Apply
Current relation	Selected attribute
Relation: labor-neg-data Attributes: 17	Name: duration Type: Numeric
Instances: 57 Sum of weights: 57	Missing: 1 (2%) Distinct: 3 Unique: 0 (0%)
Attributes	Statistic Value
	Minimum 1
All None Invert Pattern	Maximum 3
No. Name	Mean 2.161
	StdDev 0.708
1 duration 2 wage-increase-first-year 3 wage-increase-forst-year 4 wage-increase-third-year	
3 wage-increase-second-year	
4 wage-increase-third-year	
5 cost-of-living-adjustment	
6 working-hours	Class: class (Nom)
7 pension	
8 standby-pay	27
9 shift-differential	
Standby-pay Shift-differential deducation-allowance 11 statutory-holidays	19
11 statutory-holidays	
13 longterm-disability-assistance	
14 contribution-to-dental-plan	
Remove	
	1 2 3
Status	
OK	Log 🔬 ×0

4. <u>VALIDATION :</u> Click on Choose and select filters/unsupervised/attribute/Discretize.

process Classify Cluster Associate Select attribut	es Visualize			
Open file Open URL Open D	B Gene	rate Undo	Edit	Save
er) weka	~			
- A filters	<u> </u>			Apply
AllFilter		Selected attribute		
MultiFilter	sttributes: 17	Name: duration		Type: Numeric
≟- 🛅 supervised	f weights: 57	Missing: 1 (2%) Dis	tinct: 3	Unique: 0 (0%)
in the supervised in the super		Statistic	Value	
🚊 🛅 attribute		Minimum	1	
Add	Pattern	Maximum	3	
I AddCluster		Mean	2.161	
 AddExpression 		StdDev	0.708	
🌩 AddID	<u>^</u>			
🏶 AddNoise				
Image: AddValues				
Center				
ChangeDateFormat		Class: class (Nom)		Visualize /
ClassAssigner	≣			
ClusterMembership				
- Discretize		27		
FirstOrder				
				19
KernelFilter				
MakeIndicator		10		
MathExpression	✓			
MergeManyValues	~			
Filter Remove filter Close				
Filter Keillove filter		1	2	

5. Then click on the area right of the Choose button. You get the following:

🔷 weka.gui.GenericObjectEditor	×
weka.filters.unsupervised.attribute.Disc	retize
About]
An instance filter that discretizes a attributes in the dataset into nom	
attributeIndices	first-last
bins	10
desiredWeightOfInstancesPerInterval	-1.0
findNumBins	[False 👻
ignoreClass	False 👻
invertSelection	False 👻
makeBinary	False 👻
useEqualFrequency	False 👻
Open Save	OK Cancel

You see here the default parameters of this filter. Click on More to get more information about these parameters.

6. <u>VALIDATION :</u> Click on the Apply button to do the discretization. Then select one of the original numeric attributes (e.g. temperature) and see how it is discretized in the Selected attribute window.

Teprocess [C],	assify Cluster Associate Select attributes Visua	alize					
Open file.	Open URL Open DE Determ	ine relevanc	e of attribute	s Undo	Edit	Save	
Filter							
	Discretize -B 10 -M -1.0 -R first-last						Apply
Current relatio	n		 Selected a 	ittribute			
		utes: 17		duration		Type: Nominal	
Instances: 5		ights: 57	Missing:	1 (2%)	Distinct: 3	Unique: 0 (0%)	
Attributes			No.	Label	Count	Weight	
				1 '(-inf-1.2]'	10	10.0	
All	None Invert Pal	tern		2 '(1.2-1.4]'	0	0.0	
				3 '(1.4-1.6]'	0	0.0	
No.	Name			4 '(1.6-1.8]'	0	0.0	
1	duration	~		5 '(1.8-2]'	27	27.0	
2	wage-increase-first-year			6 '(2-2.2]'	0	0.0	
3	wage-increase-second-year			7 '(2.2-2.4]'	0	0.0	
	wage-increase-third-year			8 '(2.4-2.61'	n	0.0	
	cost-of-living-adjustment		Class: class	(Nore)		Visu	alize All
6 📃	working-hours		Class; class	(NOIII)		VISC	Ialize Ali
	pension						
	standby-pay				27		
	shift-differential						
	education-allowance						
	statutory-holidays						19
	vacation						
	longterm-disability-assistance	~	10				
14	contribution-to-dental-plan						
	Remove						

7. Try other parameters for the filter and see how the discretization changes. Don't forget to reload the original (numeric) relation or Undo the discretization before applying another one.

3. Normalize

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

🐼 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gener	ate Undo Edit Save
Filter Choose None	Apply
Current relation Relation: None Attributes: None Instances: None Sum of weights: None	Selected attribute Name: None Type: None Missing: None Distinct: None Unique: None
Attributes	
All None Invert Pattern	
	Visualize All
Remove	
Status Welcome to the Weka Explorer	Log 💉 X O

3. Click on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. whether.arff). You get the following:

	e: o	Undo (tribute utlook	Edit	Save Apply ype: Nominal
Nam	e: o		т	
Nam	e: o		т	
Nam	e: o		т	vpe: Nominal
	5	(0%) Dis	tinct: 3 Uni	que: 0 (0%)
No.		Label	Count	Weight
٦	1	sunny	5	5.0
	2	overcast	4	4.0
	3	rainy	5	5.0
Class: pl	ay (I	Nom)	•	Visualize All
8 18				
5			5	
		4		
		Class: play (1 sunny 2 overcast 3 rainy Class: play (Nom)	1 sunny 5 2 overcast 4 3 rainy 5 Class: play (Nom)

4. Click on Choose and select filters/unsupervised/attribute/Normalize.

Open file Open UR Open Di	B	Gene	rate	Undo	Edit	Sa	ave
er Aug		-1				lr	
AddCluster	-						Apply
AddExpression			Selected att	ribute			
AddID			Name: o	utlook		Type: Nor	minal
AddNoise		ł	Missing: 0	(0%)	Distinct: 3	Unique: 0 (0%)
AddValues			No.	Label	Count	Weigh	t
- Center		6		sunny	5	5.0	
ChangeDateFormat				overcast	4	4.0	
ClassAssigner ClusterMembership				rainy	5	5.0	
Copy	E			(Carry		1010	
Discretize							
FirstOrder							
InterguartileRange							
KernelFilter							
MakeIndicator			Class: play (N	Nom)		- Visi	ualize A
🔶 MathExpression			\$				
MergeManyValues			12				
MergeTwoValues			5			5	
NominalToBinary				4		/ 1	
• • NominalToString							
Normalize						1	
NumericCleaner NumericToBinary							
NumericToNominal							

Relat	ion: weather				
No.	1: outlook Nominal	2: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	85.0	85.0	FALSE	no
2	sunny	80.0	90.0	TRUE	no
3	overcast	83.0	86.0	FALSE	yes
4	rainy	70.0	96.0	FALSE	yes
5	rainy	68.0	80.0	FALSE	yes
6	rainy	65.0	70.0	TRUE	no
7	overcast	64.0	65.0	TRUE	yes
8	sunny	72.0	95.0	FALSE	no
9	sunny	69.0	70.0	FALSE	yes
10	rainy	75.0	80.0	FALSE	yes
11	sunny	75.0	70.0	TRUE	yes
12	overcast	72.0	90.0	TRUE	yes
13	overcast	81.0	75.0	FALSE	yes
14	rainy	71.0	91.0	TRUE	no

5. Then click on the area right of the Choose button. You get the following:

GenericObjectEditor	
nsupervised.attribute.Normalize	
s all numeric values in the given dataset (apart from	More
attribute, if set).	Capabilities
False	•]
1.0	
0.0	
. Save OK	Cancel
Contraction of the second seco	s all numeric values in the given dataset (apart from the given dataset (apart from from from from from from from from

You see here the default parameters of this filter. Click on More to get more information about these parameters.

6. <u>VALIDATION</u>: Click on the Apply button to do the normalization. Then select edit tab to view data and see how it is normalized in the data window.

Dia.	1: outlook		pervised.attr	-	1
No.	Nominal	2: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	1.0	0.645161	FALSE	no
2	sunny	0.761904761	0.806451	TRUE	no
3	overcast	0.904761904	0.677419	FALSE	yes
4	rainy	0.285714285	1.0	FALSE	yes
5	rainy	0.190476190	0.483870	FALSE	yes
6	rainy	0.047619047	0.161290	TRUE	no
7	overcast	0.0	0.0	TRUE	yes
8	sunny	0.380952380	0.967741	FALSE	no
9	sunny	0.238095238	0.161290	FALSE	yes
10	rainy	0.523809523	0.483870	FALSE	yes
11	sunny	0.523809523	0.161290	TRUE	yes
12	overcast	0.380952380	0.806451	TRUE	yes
13	overcast	0.809523809	0.322580	FALSE	yes
14	rainy	0.333333333	0.838709	TRUE	no

7. Try other parameters for the filter and see how the normalization changes. Don't forget to reload the original (numeric) relation or Undo the normalization before applying another one.

4. Remove

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Genera	ate Undo Edit Save
Filter Choose None	Apply
Current relation Relation: None Instances: None Sum of weights: None	Selected attribute Name: None Type: None Missing: None Distinct: None Unique: None
Attributes All None Invert Pattern	Visualize All
Status Welcome to the Weka Explorer	Log 💉 ×0

3. Click on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. weather.arff). You get the following:

reprocess	Classify Cluster	Associate	Select attribute	s Visualize					
Open fi	Open	Open	Gen	era		Undo] [Edit	Sav	e
Filter									
Choose	None								Apply
Current relat Relation: Instances:	weather		ttributes: 5 weights: 14	Selected Name: Missing:	OL	utlook	stinct: 3 l	Type: No Jnique: 0 (
Attributes				No.		Label	Count	Weigh	t
All	None	Invert	Patt		1	sunny	5	5.0	
		Invere			2	overcast	4	4.0	
No.	Name				3	rainy	5	5.0	
1	outlook			Class: play	0	lom)	6	Visua	lize All
2	temperature								
3	humidity								
4	windy			5				5	
5[play					4			
[Remo	ive							

4. Click on Choose and select filters/unsupervised/attribute/Remove.

process	Classify Cluster Associate Select a	ttributes	Visua	lize			
Open fil	e Open UR Open DB.	G	ener	ate	Undo	Edit	Save
r							
	- FirstOrder	~					Apply
	InterquartileRange KernelFilter MakeIndicator		4	Selected att Name: o Missing: 0	utlook	Distinct: 3	Type: Nominal Unique: 0 (0%)
	 MathExpression MergeManyValues 		-	No.	Label	Count	Weight
	MergeTwoValues		h	1	sunny	15	5.0
	NominalToBinary				overcast	4	4.0
	• NominalToString			3	rainy	5	5.0
	Normalize						
	NumericCleaner						
	NumericToBinary						
	NumericToNominal		4				
	••• NumericTransform	10					10
	••• • Obfuscate			Class: play (1	Nom)		 Visualize A
	PartitionedMultiFilter						77.
	PKIDiscretize			5			5
	PrincipalComponents						
	DandomDrojection						
	RandomProjection PandomSubset				4		
	RandomSubset				4		
					4		

5. Then click on the area right of the Choose button. You get the following:

weka.filters.unsup	pervised.attribute.Remove	
About		
A filter that rem	noves a range of attributes from the dataset.	More
		Capabilities
attributeIndices	5	
invertSelection	False	
	Save OK	Cancel

You see here the default parameters of this filter. Enter the Indices of attribute to be remove Click on more to get more information about these parameters.

6. **<u>VALIDATION :</u>** Click on the Apply button to do the remove.

Choose Remove -R 5 Apply Current relation Relation: weather-weka.filters.un Attributes: 4 Sum of weights: 14 Attributes Sum of weights: 14 None Invert Pattern All None Invert Pattern 0(0%) Distinct: 3 Unique: 0 (0%) No. Name 1 sunny 5 5.0 2 temperature 3 namidity 5 5.0 3 humidity 4 windy 5 5.0	Preprocess Classify Cluster Associate Select attributes Visua	alize			
Current relation Relation: weather-weka.filters.un Attributes: 4 Selected attribute Name: outlook Type: Nominal All None Invert Pattern 0(%) Distinct: 3 Unique: 0 (0%) No. Name 1 sum of weights: 14 No. Label Count Weight 1 outlook 2 temperature 3 humidity 5 5.0 3 humidity 4 windy Vindey Vindey Vindey	Open file Open UR Open DB Gener	ate	Undo	Edit	Save
Current relation Relation: weather-weka.filters.un Attributes: 4 Selected attribute Instances: 14 Sum of weights: 14 Name: outlook Type: Nominal All None Invert Pattern No. Name 1 outlook 1 outlook 2 temperature 3 humidity 4 windy	Filter				
Relation: weather-weka.filters.un Attributes: 4 Instances: 14 Sum of weights: 14 Attributes Name: outlook All None Invert Pattern No. Name 1 outlook 2 temperature 3 humidity 4 windy	Choose Remove -R 5				Apply
All None Invert Pattern No. Name 1 outlook 2 temperature 3 humidity 4 windy	Relation: weather-weka.filters.un Attributes: 4	Name: o	outlook	Distinct: 3	
All None Invert Pattern No. Name 1 outlook 2 temperature 3 humidity 4 windy	Attributes	No.	Label	Count	Weight
2 overcast 4 4.0 No. Name 3 rainy 5 5.0 1 outlook 2 temperature 3 humidity 4 windy	All None Invert Pattern	1	sunny	5	5.0
No. Name		2	2 overcast	4	4.0
1 outlook 2 temperature 3 humidity 4 windy	No. Name	3	rainy	5	5.0
2 temperature 3 humidity 4 windy					
4 windy					
	3 humidity				
Class: windy (Nom)	4 windy				
		Class: windy	(Nom)		✓ Visualize A

7. Try other parameters for the filter and see how the remove changes. Don't forget to reload the original (numeric) relation or Undo the remove before applying another one.

5. Replace Missing Values

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

eprocess classify cluster Associat	e Select attributes Visualize			
Open file Open URL	Open DB Gene	rate Und	do Edit	Save
lter				
Choose None				Apply
urrent relation		Selected attribute		
Relation: None Instances: None	Attributes: None Sum of weights: None	Name: None Missing: None	Distinct: None	Type: None Unique: None
ttributes				
All None	Invert Pattern			
All None				
				Visualize All
				Visualize Al
				Visualize All
Rem	we			Visualize Al

3. Click on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. weather.arff). You get the following:

reprocess Classify Cluster Associate Select attributes Visualize				1997	
Open file Open URL Open DB Gener	rate	Undo	Edit	Si	ave
Filter					
Choose ReplaceMissingValues -unset-class-temporarily					Apply
Current relation Relation: marks-weka.filters.unsupervised.attri Attributes: 2 Instances: 7 Sum of weights: 7	Name	attribute : Name : 0 (0%)	Distinct: 7	Type: Nomir Unique: 7 (10	
Attributes	No.	Label	Count	Weight	
All None Invert Pattern		1 rahul	1	1.0	
All None Invert Fattern		2 roy	1	1.0	
No. Name		3 rohit	1	1.0	
1 Mame 2 marks	Class: ma		1.2.	1	Visualize All
	1	11	1 1	1	1
Remove					
tatus					

No.	1: Name Nominal	2: marks Numeric	
1	rahul		
2	roy	55.0	
2 3 4	rohit	22.0	
4	ajay	87.0	
5	asad		
5	asha	65.0	
7	seema		

4. Click on Choose and select filters/unsupervised/attribute/ReplaceMissingValues.

Open file	Open URL	Open DB	Gene	und Und	do Edit	Save
ter						
• N	lumericCleaner lumericToBinary lumericToNominal	*		Selected attribute		Appl
	lumericTransform		butes: None	Name: None		Type: None
	Obfuscate		eights: None	Missing: None	Distinct: None	Unique: None
	artitionedMultiFilter					
	KIDiscretize		Pattern			
	rincipalComponents		Pattern			
	landomProjection					
	landomSubset lemove					
	lemove Name					
	lemoveType					
	temoveUseless					
	enameAttribute			r		1
- F	leorder			i.		 Visualize #
🐽 🖪	teplaceMissingValues					
• 5	ortLabels					
- • S	itandardize	E				
- • S	tringToNominal					
- • S	stringToWordVector					
	SwapValues					
	imaCaricaDalta					

5. Then click on the area right of the Choose button. You get the following:

ka.filters.u	nsupervised.attribute.ReplaceMissingValues	
About		
	all missing values for nominal and numeric attributes	More
in a datas	et with the modes and means from the training data.	Capabilities

You see here the default parameters of this filter. Click on more to get more information about these parameters.

6. <u>VALIDATION</u>: Click on the Apply button to do the Replace Missing Values. Then select edit tab to view data and see how it Replaced missing values in the data window.

No.	1: Name Nominal	2: marks Numeric	
1	rahul	57.25	
2	roy	55.0	
3	rohit	22.0	
4	ajay	87.0	
5	asad	57.25	
6	asha	65.0	
7	seema	57.25	

7. Try other parameters for the filter and see how the replace values changes. Don't forget to reload the original (numeric) relation or Undo the replaced before applying another one.

6. Standardize

1. Start Weka – you get the Weka GUI chooser window.

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

) Weka Explorer				
reprocess Classify Cluster Associate Select	attributes Visualize			
Open file Open URL	Open DB Gener	ate Und	o Edit	Save
Filter Choose None				Apply
Current relation		Selected attribute		
Relation: None Instances: None	Attributes: None Sum of weights: None	Name: None Missing: None	Distinct: None	Type: None Unique: None
Attributes				
All None Inve	rt Pattern			
				Visualize All
Remove				
tatus				
Velcome to the Weka Explorer				Log 🛷 '

3. Click on the "Open File." button and open an ARFF file (try it first with an example supplied in Weka-3-6/data, e.g. weather.arff). You get the following:

Relation: weather Attributes: 5 Name: outlook T Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Un	Save Apply ype: Nominal que: 0 (0%)
Choose None Current relation Selected attribute Relation: weather Attributes: 5 Instances: 14 Sum of weights: 14 Attributes Mainer: Outbook All None No. Name 1 outbook 2 temperature 3 humidity 4 windy	ype: Nominal
Current relation Relation: weather Attributes: 5 Instances: 14 Sum of weights: 14 Attributes Attributes: 0 (0%) Distinct: 3 Un No. Label Count 1 sunny 5 2 overcast 4 3 rainy 5 Class: play (Nom) Class: play (Nom)	ype: Nominal
Relation: weather Instances: 14 Attributes: 5 Sum of weights: 14 Name: outlook T Attributes Image: outlook T Missing: 0 (0%) Distinct: 3 Un All None Invert Patt No. Label Count No. Name 3 rainy 5 Image: outlook T 2 temperature 3 rainy 5 Image: outlook T 4 windy 5 Image: outlook T Image: outlook T	
All None Invert Patt No. Name 1 outlook 2 temperature 3 humidity 4 windy	
All None Invert Patt No. Name 1 outlook 2 temperature 3 humidity 4 windy	Weight
No. Name 1 outlook 2 bemperature 3 humidity 4 windy	5.0
No. Name I outlook Class: play (Nom) Class: play (Nom) A windy	4.0
2 Emperature 3 Thumidity 4 Windy 5	5.0
3 humidity 4 windy	Visualize All
4 windy 6	
4 Windy	
5 play	
Remove	
Status	

No.	1: outlook Nominal	2: temperature Numeric	3: humidity	4: windy Nominal	5: play Nominal	
1	sunny	85.0	85.0	FALSE	no	
2	sunny	80.0	90.0	TRUE	no	
3	overcast	83.0	86.0	FALSE	yes	
4	rainy	70.0	96.0	FALSE	yes	
5	rainy	68.0	80.0	FALSE	yes	
6	rainy	65.0	70.0	TRUE	no	
7	overcast	64.0	65.0	TRUE	yes	
8	sunny	72.0	95.0	FALSE	no	
9	sunny	69.0	70.0	FALSE	yes	
10	rainy	75.0	80.0	FALSE	yes	
11	sunny	75.0	70.0	TRUE	yes	
12	overcast	72.0	90.0	TRUE	yes	
13	overcast	81.0	75.0	FALSE	yes	
14	rainy	71.0	91.0	TRUE	no	

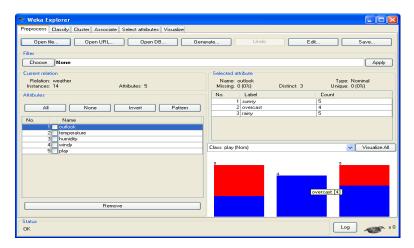
4. Click on Choose and select filters/unsupervised/attribute/Standardize.

	Open DB Gene	rate	do Edit	Save
r				J
• • NumericCleaner				App
NumericToBinary NumericToNominal NumericTransform	butes: None	Selected attribute Name: None		Type: None
Obfuscate PartitionedMultiFilter	eights: None	Missing: None	Distinct: None	Unique: None
PKIDiscretize				
PrincipalComponents	Pattern			
 RandomProjection RandomSubset 				
Remove				
- • RemoveByName				
 RemoveType RemoveUseless 				
RenameAttribute		r		1
Reorder				▼ Visualize
ReplaceMissingValues				
SortLabels				
 Standardize StringToNominal 				
 StringToWordVector 				

5. Then click on the area right of the Choose button. You get the following:

eka.filters.u	insupervised.attribute.Standardize	
About		
	izes all numeric attributes in the given dataset to have (More
7010 0000		Construction of the second
set).	n and unit variance (apart from the class attribute, if	Capabilities
	False	Capabilities

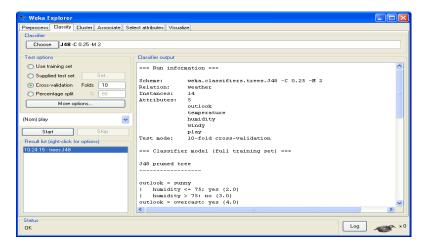
You see here the default parameters of this filter. Click on more to get more information about these parameters.


6. <u>VALIDATION</u>: Click on the Apply button to do the Standardization. Then select edit tab to view data and see how it standard the values in the data window.

No.	1: outlook Nominal	2: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	1.739067215	0.326404	FALSE	no
2	sunny	0.978225308	0.812539	TRUE	no
	overcast	1.434730452	0.423631	FALSE	yes
	rainy	-0.543458504	1.395900	FALSE	yes
5	rainy	-0.847795267	-0.15972	FALSE	yes
5	rainy	-1.304300411	-1.13199	TRUE	no
7	overcast	-1.456468792	-1.61813	TRUE	yes
3	sunny	-0.239121742	1.298673	FALSE	no
ŧ.	sunny	-0.695626886	-1.13199	FALSE	yes
0	rainy	0.217383401	-0.15972	FALSE	yes
11	sunny	0.217383401	-1.13199	TRUE	yes
12	overcast	-0.239121742	0.812539	TRUE	yes
13	overcast	1.130393690	-0.64586	FALSE	yes
14	rainy	-0.391290123	0.909766	TRUE	no

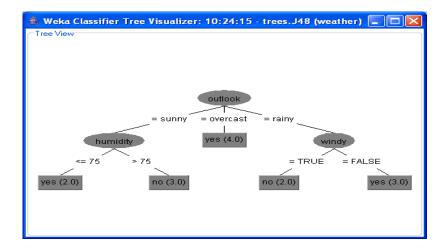
7. Try other parameters for the filter and see how the standardize changes. Don't forget to reload the original (numeric) relation or Undo the standardize before applying another one.

PROGRAM 7. Classification of algorithms using WEKA


7.1. Aim : Obtain decision tree for different data sets using WEKA

Click on classify, then choose

🐡 Weka Explorer	
Preprocess Classify Cluster Associate Select attribute	
Classifier	
weeka Baselifiers Close Baselifiers Baselifiers Close Filter Permove filter Close	er output
· · · · · · · · · · · · · · · · · · ·	
Status	
Weka Explorer Preprocess Classify Cluster Associate Select attribute Classifier Choose J48 -C 0.25 -M 2	ss Visualize
	Classifier output
Use training set Supplied test set Set	
(Nom) play 😪	
Start Stop Result list (right-click for options)	
CStatus OK	Log ×0


Click on start

Click on percentage split

Click on 102415-treesJ48

🔭 Weka Explorer								
Preprocess Classify Cluster	Associate Sele	ct attributes Visualize						
Classifier								
Choose J48 -C 0.25 -M	2							
	-							
Test options		Classifier output						
 Use training set 	correctly classified						04.2037 3	
	Incorrectly Classic			Instances	5		35.7143 %	
 Supplied test set 	O Supplied test set Set Kappa statistic				0.18			
Cross-validation Folds	10	Mean absolute erro Root mean squared			0.28			
Percentage split %	66	Relative absolute			60	* 10		
		Root relative squa		ror	97.6586 %			
More options			ot relative squared error 97.6566 %					
<u></u>	Total wamber of in							
(Nom) play	~	=== Detailed Accur	асу Ву	7 Class ==:	-			
Start	Stop	тр	Rate	FP Rate	Precision	Recall	F-Measure	ROC Are
Result list (right-click for options)		0	.778	0.6	0.7	0.778	0.737	0.789
10:24:15 - trees.J48	,	0	.4	0.222	0.5	0.4	0.444	0.789
10:24:15 - trees.348	View in main v	vindow	643	0.465	0.629	0.643	0.632	0.789
	View in separ-	ate window						
	Save result b	uffer	×	-				
	Delete result	buffer ed as						
	Load model		eu as	3				
	Save model							
	Re-evaluate model on current test set							
	Visualize class	ifier errors	1					~
	Visualize tree							>
Status	Visualize marg	jin curve						
OK	Visualize thre:	shold curve					Log	
- Six	Cost/Benefit	analysis 🕨						
	United and the second							

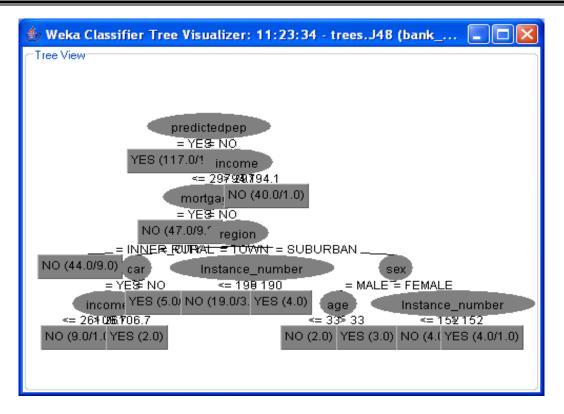
Second data set:

Bankprediction data set

🛠 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Ger	erate Undo Edit Save
Choose None	Apply
Current relation Relation: bank_predicted Instances: 300 Attributes: 11	Selected attribute Name: Instance_number Missing: 0 (0%) Distinct: 300 Unique: 300 (100%)
Attributes	Statistic Value
All None Invert Pattern	Maximum 299 Mean 149.5
No. Name	StdDev 86.747
1 Instance_number 2 age 3 sex	
4 region 5 income	Class: pep (Nom) Visualize All
6 married 6 car 9 mortgage 10 predictadpep 11 pep	43 43 43 42 43 43 43
Remove	0 140.5 200
Status OK	Log x0

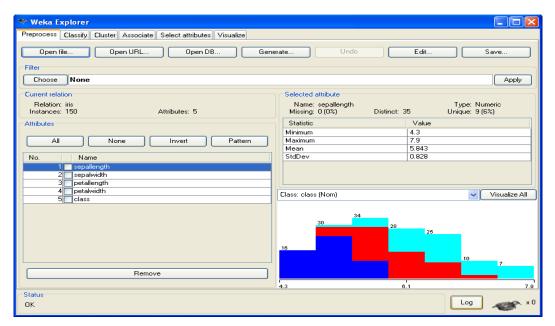
Click on classify

Then click on choose and in trees choose j48


😤 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Vi	isualize
Classifier	
💼 weka 🔼	
tunctions	ier output
JythonClassifier	
🗊 💼 lazy	
🗄 💼 meta	
iar — ini ar — inisc	
🚊 💼 trees	
ADTree	
() BFTree DecisionStump	
← FT	
L Id3	
J48 J48graft	
ADTree	
● LMT	
M5P	
NBTree 	
RandomTree	
REPTree	
Filter Remove filter Close	
	1
Status	
OK	Log 🛷 ×0

Click on start

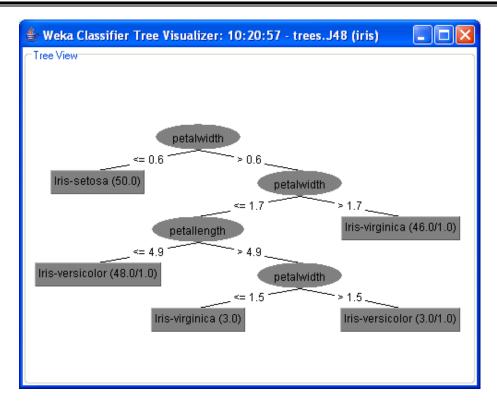
🕈 Weka Explorer			
Preprocess Classify Cluster Associate Sel	ect attributes Visua	lize	
Classifier			
Choose J48 -C 0.25 -M 2			
Test options	Classifier output		
O Use training set	=== Run info	rmation ===	
O Supplied test set Set			
	Scheme:	weka.classifiers.trees.J48 -C 0.25 -M 2	
Ŭ	Relation:	bank_predicted	
O Percentage split % 66	Instances:	300	
More options	Attributes:	11	
		Instance_number	
(Nom) pep		age sex	
(Nom) pep 👻		region	
Start Stop		income	
		narried	
Result list (right-click for options)		children	
11:23:34 - trees.J48		car	
		nortgage	
		predictedpep	
		pep	
	Test mode:	10-fold cross-validation	
	=== Classifi	er model (full training set) ===	
	J48 pruned t	ree	~
	<	111	
Status	、 		
ok			Log X0
UK .			


Click on percentage split

Weka Explorer Preprocess Classify Cluster A:	ssociate Sele	ect attributes Visualize						
Classifier								
Choose J48 -C 0.25 -M 2								
O Cross-validation Folds	et 10	Classifier output Correctly Classifier Kappa statistic Hean absolute error Root mean squared err Root relative squared	ed I cor cor i er	instances	230 62 0.58 0.31 0.40 62.73 82.18	17 96 94 %	20.6667	\$
(Nom) pep Start St Result list (right-click for options)	op	Total Number of Insta === Detailed Accuracy TP Rat 0.7.	y By te 17	7 Class === FP Rate 0.142	Precision 0.811	0.717	F-Measure 0.762	ROC Are 0.76
11:23:34 - trees.J48	View in ma View in sep Save resul	parate window	58 13 ===	0.283 0.218	0.781 0.795	0.858 0.793		0.76 0.76
	Delete res Load mode Save mode Re-evalual		fie	ed as				
Status	Visualize tr	assifier errors ee argin curve		1111				>
OK	Visualize th Cost/Bene Visualize ci						Log	

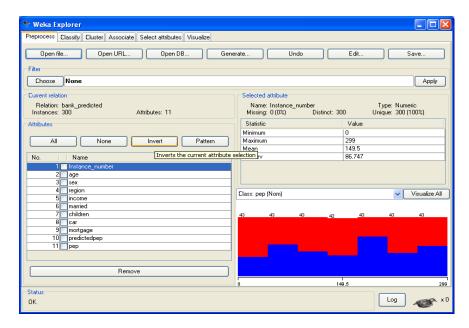
Third data set:

Sleep data set


🏷 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes	Visualize
Classifier	
Classifiers Classifiers Classifier Clas	Per output
Status	
OK	Log 🛷 ×

Click on classify and choose from trees choose j48 algorithm

Click on start and then click on percentage split


🤝 Weka Explorer								
Preprocess Classify Clus	ster Associate Sel	ect attributes Visualize	•]					
Classifier								
Choose J48 -C 0 2	25 M 2							
C100.6 348 C 0.2	53 M 2							
Test options		Classifier output						
🔿 Use training set		Mean absolute			0.03	e		~
Ŭ P		Root mean squa			0.03			
 Supplied test set 	Set	Relative absol			7.87			
Cross-validation F	olds 10	Root relative		rror	33.63			
 Percentage split 	% 66	Total Number o	f Instanc	23	150			
More option	ns	=== Detailed A	ccuracy B	y Class ==	-			
L								
(Nom) class	~		TP Rate 0.98	FP Rate	Precision 1	Recall 0.98	F-Measure 0.99	ROC Are
Start	Stop		0.98	0.03	0.94	0.98	0.99	0.952
Start	stop		0.94	0.03	0.941	0.96	0.95	0.961
Result list (right-click for op)	ptions)	Weighted Avg.	0.96	0.02	0.96	0.96	0.96	0.968
10:20:57 - trees.J48	View in main win	dow						
	View in separate		rix ==	-				
	Save result buff							
	Delete result bu		lassif: Iris-s					
	Load model			etosa ersicolor				=
	Save model			irginica				
	Re-evaluate mo	del on current test set	1110 0.	riginiou				
	Visualize classifie	er errors						~
	Visualize tree							>
<u></u>	Visualize margin						2	
Status	Visualize thresho		•					1
οκ	Cost/Benefit and		•				Log	J
ι,	Visualize cost cu	rve	•					

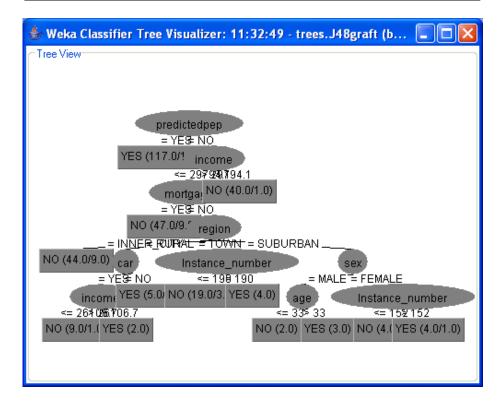
VALIDATION :

7.2. Aim: Classification algorithms using WEKA.

Bank prediction data set using nb tree:

😤 Weka Explorer							
Preprocess Classify Cluster Associate Select attributes \	Vis	Jalize					
Classifier							
🔁 weka	~						
in classifiers							
🔁 💼 bayes							
functions		Idaaliieu inacancea		230		79.0000	
 JythonClassifier 	2	Classified Instance	:5	62		20.6667	÷ 🎴
🗎 💼 lazy	i	stic		0.58	04		
🗎 🧰 meta		te error		0.31	17		
🖳 🖳 🛄 mi		quared error		0.40	96		
😐 🚊 misc	þ	solute error		62.73	94 %		
rules trees	i	ve squared error		82.18	27 %		
ADTree		r of Instances		300			
BFTree							
0 DecisionStump	h	d Accuracy By Class					
- FT							
L Id3		TP Rate FP Rat		Precision		F-Measure	ROC Are
- J48		0.717 0.14		0.811		0.762	0.76
J48graft		0.858 0.28		0.781			
 LADTree 	þ	g. 0.793 0.21	.8	0.795	0.793	0.792	0.76
LMT							
• M5P	i	on Matrix ===					
NBTree							
 RandomForest BandomTree 		< classified as					
BEPTree	-	a = YES					-
		b = N0					
Filter Remove filter Close	J						
							×
Status							
ок						Log	J ~≪≫^ ×0

🗢 Weka Explorer							
Preprocess Classify Cluster Associate Sel	ect attributes Visualiz	•					
Classifier							
Choose NBTree							
Test options	Classifier output						
 Use training set 	Incorrectly Cl		Instances	22		21.5686	* 🔼
O Supplied test set Set	Kappa statisti			0.55			
Cross-validation Folds 10	Mean absolute			0.32			
	Root mean squa			0.41			
Percentage split % 66	Relative absol Root relative			64.66 82.52			
More options	Total Number o			102	8 %		
	Total Mumber o	L Instante		102			
(Nom) pep 🛛 👻	=== Detailed A	ccuracy By	y Class ==:	-			
Start Stop		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Are
		0.711	0.158	0.78	0.711	0.744	0.816
Result list (right-click for options)		0.842					0.816
11:23:34 - trees.J48	Weighted Avg.	0.784	0.231	0.784	0.784	0.783	0.816
11:30:11 - trees.NBTree							
	=== Confusion	Matrix ==-	-				
	a b < c	lassified					
	32 13 a =		d.5				
	948 b =						
							~
	<						>
C Status	<u></u>						
OK						Log	×0
UK .							

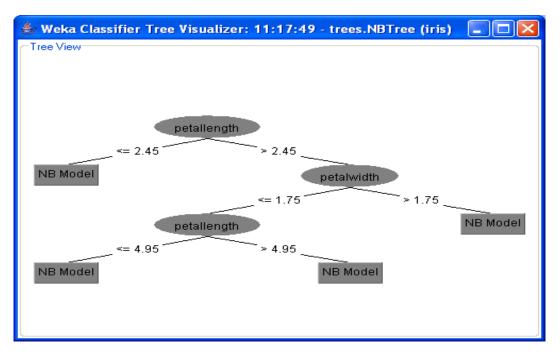

🐄 Weka Explorer							
Preprocess Classify Cluster Associate Se	ect attributes V	isualize					
Classifier							
Choose NBTree							
Test options	Classifier output	t					
 Use training set 	Incorrectl	y Classified]	Instances	22		21.5686	. 🔼
O Supplied test set Set	Kappa stat	istic		0.55	84		
	Mean absol			0.32			
		squared error		0.41			
 Percentage split % 66 		absolute error		64.66			
More options		ive squared en		82.52	8 %		
	Total Numb	er of Instance	23	102			
(Nom) pep 🗸 🗸	Detail	ed Accuracy By	7 Class	-			
Start Stop		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Are
		0.711	0.158	0.78	0.711	0.744	0.816
Result list (right-click for options)		0.842	0.289	0.787	0.842	0.814	0.816
11:23:34 - trees.J48	Weighted A	vg. 0.784	0.231	0.784	0.784	0.783	0.816
11:30:11 - trees.N View in main window							
View in separate window		ion Matrix ===	=				
Save result buffer		classified					
Delete result buffer		a = YES	as				
Load model		p = N0					
Save model							
Re-evaluate model on cu	rrent test set						~
Visualize classifier errors)	>
Visualize tree							
Visualize margin curve						Log	
OK Visualize threshold curve						Log	

Bank prediction data set using j48graft:

° Weka Explorer						
Preprocess Classify Cluster Associate Select attribute	es Visualize					
Open/Edit/Save instances Open file Open URL Open	DB	Generate	Undo	Edit		Save
Filter						
Choose None						Apply
Current relation		Selected a	the first state			
Relation: bank_predicted		Name:	Instance_number		Type: N	umeric
Instances: 300 Attributes: 11		Missing:	U (U%) D =	tinct: 300	Unique: 30	JU (1UU%)
Attributes		Statistic Minimum		Valu 0	le	
All None Invert	Pattern	Maximum		299		
No. Name		Mean StdDev		149.5		
1 Instance_number						
2 age 3 sex		-111				
4 region		Class: pep ()	lom)		~	Visualize Al
5 income 6 married		- Cideo: pop (i				
7 children		43 4	43 43	42	43 43	43
8 car 9 mortgage						
10 predictedpep						
11 pep				_		
Remove						
		6		149.5		
						_
					Log	-Andrew
эк					Log	~~
OK Weka Explorer	es Visualize				Log	
DK Weka Explorer eprocess Classify Cluster Associate Select attribute	es Visualize				Log	
DK Weka Explorer eprocess Classify Cluster Associate Select attribute Classifier ureka	es Visualize				Log	
Weka Explorer eprocess Classify Cluster Associate Select attribute Classifier ↓ weka ↓ contactions					Log	
Weka Explorer eprocess Classify Cluster Associate Select attribute classifier Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers						
Weka Explorer eprocess Classify Cluster Associate Select attribute lassifier weka Clustifier Weka Clustifier Weka Clustifier Weka Clustifier Weka Clustifier Clus		fied Instance		5755	Log 20.5882	
Weka Explorer eprocess Classify Cluster Associate Select attribute lassifier weka Clustifier Weka Clustifier Weka Clustifier Weka Clustifier Weka Clustifier Clus	y Classi istic ite erro	r	0.3	3128		
Weka Explorer eprocess Classify Classify Cluster Associate Select attribute Itessifiers Itessifiers Image: Select attribute Itessifiers Image: Select attrites Itessif	Y Classi istic	r error	0.: 0.: 0.:			
Weka Explorer eprocess Classify Classifier weka Classifiers Image: Classifier	Y Classi istic ite erro squared osolute ive squa	r error error red error	0.: 0.: 63.(81	3128 405		
Weka Explorer eprocess Classity Cluster Associate Select attribute Lassifier weka Classifiers Classifiers Classifiers Classifier C	y Classi istic ite erro squared psolute	r error error red error	0.: 0.: 0 63.1	3128 ⊈05)032 %		
K Weka Explorer eprocess Classify Cluster Associate Select attribute lassifier evela	y Classi istic ite erro squared osolute ive squa er of In	r error error red error	0.1 0.1 0.4 63.1 81.4 102	3128 ⊈05)032 %		
Weka Explorer eprocess Classity Cluster Associate Select attribute Lassifier weka Classifiers Classifiers Classifiers Classifier C	y Classi istic istic squared ssolute ive squa er of In ed Accur	r error error red error stances acy By Class	0.1 0.3 0. 63.1 81 102	3128 405 0032 % 4272 %	20.5882	•
Weka Explorer eprocess Classify Classifier Select attribute Jassifiers Select attribute Inctions Select attribute	y Classi istic ite erro squared solute ive squa ar of In ad Accur TP	r error error red error stances	0.1 0.2 0.4 63.0 81.4 102 ===	3128 405 0032 % 4272 % n Recall		
Weka Explorer reprocess Classify Cluster Associate Select attribute Tassifier Interview Select attribute Interview Dages Interview Interview Interview Select attribute Interview Dages Interview Interview Interview Select attribute Interview Dages Interview Interview Interview Interview Interview Interview Interview Interview ADTree Interview Interview Interview Interview Interview Interview Interview Interview ADTree Interview Interview Interview Interview <t< td=""><td>y Classi istic ite erro solute ive squa =r of In =d Accur TP 0 0</td><td>r error red error stances acy By Class Rate FP Rat .689 0.12 .877 0.33</td><td>0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781</td><td>3128 405 0032 % 4272 % n Recall 0.689 0.877</td><td>20.5882</td><td>ROC Are 0.783 0.783</td></t<>	y Classi istic ite erro solute ive squa =r of In =d Accur TP 0 0	r error red error stances acy By Class Rate FP Rat .689 0.12 .877 0.33	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer eprocess Classify Cluster Associate Select attribute lassifier Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers Classifiers Classifier C	y Classi istic ite erro solute ive squa =r of In =d Accur TP 0 0	r error red error stances acy By Class Rate FP Rat .689 0.12	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	8128 405 0032 % 4272 % n Recall 0.689	20.5882 F-Measure 0.747	ROC Are 0.783
SK Weka Explorer reprocess Classify Cluster Associate Select attribute Classifier → classifiers → classifiers → dythorClassifier → dythor	y Classi istic ite erro solute ive squa =r of In =d Accur TP 0 0	r error red error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer reprocess Classify Cluster Associate Select attribute Lassifier Lassifier Lassifier Lassifier Lassifier Lassifier Lassifier Lassifier Lasy Lasy <	y Classi istic ite erro gquared ysolute ive squa et of In ed Accur TP 0 0 yg. 0 ion Matr	r error error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22 ix ===	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer reprocess Classify Classify Cluster Associate Select attribute Iterations Select attribute <	y Classi istic ite erro gquared bsolute ive squa er of In ed Accur TP 0 0 sg. 0 ion Matr - class a = YES	r error red error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer reprocess Classify Cluster Associate Select attribute Classifier Image: Select attribute Image: Select at	y Classi istic ite erro solute ive squa ar of In ed Accur TP 0 0 5 g. 0 ion Matr - class a = YES = N0	r error error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22 ix ===	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer reprocess Classify Classify Cluster Associate Select attribute Iterations Select attribute <	y Classi istic ite erro solute ive squa ar of In ed Accur TP 0 0 5 g. 0 ion Matr - class a = YES = N0	r error error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22 ix ===	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
Weka Explorer reprocess Classify Classify Cluster Associate Select attribute Classifiers Interview Image: Select attribute Interview Image: Select	y Classi istic ite erro solute ive squa ar of In ed Accur TP 0 0 5 g. 0 ion Matr - class a = YES = N0	r error error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22 ix ===	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	ROC Are 0.783 0.783
classifiers classifiers classifier classifier classifier classifier class classifier	y Classi istic ite erro solute ive squa ar of In ed Accur TP 0 0 5 g. 0 ion Matr - class a = YES = N0	r error error stances acy By Class Rate FP Rat .689 0.12 .877 0.33 .794 0.22 ix ===	0.1 0.1 0.1 63.1 81.1 102 22 Precision 23 0.816 11 0.781	3128 405 0032 % 4272 % n Recall 0.689 0.877	20.5882	* ROC Are 0.783 0.783 0.783

🎌 Weka Explorer							
Preprocess Classify Cluster Associate Se	elect attributes V	/isualize					
Classifier							
Choose J48graft -C 0.25 -M 2							
Test options	Classifier output	ut					
 Use training set 	Incorrect.	ly Classified	Instances	21		20.5882	• 🔼
O Supplied test set Set	Kappa sta			0.57	55		
		lute error		0.31			
Cross-validation Folds 10		squared error		0.40			
 Percentage split % 66 		absolute error		63.00			
More options	More options Root rela			81.42	72 %		
	lotal Num	ber of Instanc	es	102			
(Nom) pep 🗸 🗸	=== Detai.	etailed Accuracy By Class ===					
Start Stop		TP Rate	FP Rate	Precision		F-Measure	ROC Are
Result list (right-click for options)		0.689 0.877	0.123	0.816 0.781	0.689	0.747	0.783
11:23:34 - trees. J48	Weighted .		0.311	0.701	0.877		0.783
11:30:11 - trees.NBTree	werghted ;	avg. 0./94	0.220	0.796	0.794	0.791	0.765
11:31:30 - trees.J48graft	=== Confu:	sion Matrix ==	-				
11:32:49 - trees.J48oraft View in main window		7					
View in separate window		classified	as				
Save result buffer		a = YES					
Delete result buffer		b = NO					
Load model		-					
Save model						1	<u> </u>
Re-evaluate model on cu	rrant tact cat		111			J	>
Status Visualize classifier errors	n one tost set						
OK Visualize classifier errors						Log	×0

Bank prediction data set using nb tree:


Bankpred dataset: using NBtree

🌩 Weka Explorer									
Preprocess Classify Cluster Associate Sel	ect attributes Visualize								
Classifier									
Choose NBTree									
Test options	Classifier output								
○ Use training set	Mean absolute			0.04			<u>^</u>		
O Supplied test set Set	Root mean squa			0.16					
Cross-validation Folds 10	Relative absolution Root relative			10.74 34.38					
Percentage split % 66	Total Number o	-		150	<i>, , ,</i>				
More options	=== Detailed A	ccuracy By	y Class ==:	=					
(Nom) pep 🛛 🐱		TP Rate	FP Rate O	Precision 1	Recall 1	F-Measure 1	ROC Are		
Start Stop		0.92	0.05	0.902	-	-	0.991		
		0.9		0.918			0.983		
Result list (right-click for options)	Weighted Avg.	0.94	0.03	0.94	0.94	0.94	0.991		
11:17:49 - trees.NBTree	=== Confusion 1								
		- classifi							
		= Iris-se = Iris-ve							
	0 40 4 0								
			2				=		
							~		
	<						>		
Status DK						Log) 🛷 ×0		

🥗 Weka Explorer							
Preprocess Classify Cluster Associate Sel	ect attributes Visualize	•					
Classifier							
Choose NBTree							
Test options	Classifier output						
 Use training set 	Mean absolute			0.04			<u>~</u>
O Supplied test set Set	Root mean squa			0.16			
O Cross-validation Folds 10	Relative absolution Root relative		ror	10.74 34.38			
Percentage split % 66	Total Number o			150	0/ 3		
More options	=== Detailed A	ccuracy By	7 Class ==:	=			
		TP Rate	FP Rate	Precision	B	F-Measure	ROC Are
(Nom) pep 🛛 😽		l Race	nn Race	l	l	r-neasure 1	ROL AFE
Start Stop		0.92	0.05	0.902	0.92	0.911	0.991
		0.9	0.04	0.918	0.9	0.909	0.983
Result list Starts the classification	Weighted Avg.	0.94	0.03	0.94	0.94	0.94	0.991
11:17:49 - trees.NBTree	=== Confusion 3	Matriy	_				
	confusion	Macrix	-				
	abc <-	- classif:	ied as				
		= Iris-se					
		= Iris-ve					
	0 5 45 c	= Iris-Vi	irginica				
							_
	<						>
<u>[]</u> [
Status OK						Log	×0
UK							

🖤 Weka Explorer								
Preprocess Classify Cluster Associa	Ae Sek	ect attributes Visuale						
Classifier								
Choose NBTree								
Test options		Classifier output						
 Use training set. 		Hean abrolute	error		0.04	28		~
O Supplied text set	Root mean squared error 0.1621							
	Relative absolute error							
Contraction in the second		Root relative						
O Percentage split 32 05		Total Number o	d Instanc	es	150			
More options		Detailed A	coursecy B	y Class	-			
l.								
[Noni] pep	~		TP Rate	FF Rate	Precision		F-Beasure	ROC Are
			1 0.92	0.05	1 0.902	1 0.92	1 0.911	1 0.991
Start Stop			0.92	0.05	0.918			0.983
Presuit list (right-click for options)		Weighted Avg.	0.94	0.03	0.94	0.94	0.94	0.991
11:17:43 - bees NBTree	View	in main window		1				
			in separate window					
	Save	result buffer		ed as				
	Delet	e result buffer		5078				
	Load model			ESICOLOE				
	Save	model		nginica				
	Re-ev	valuate model on curve	nit test set					
	Visua	ize dassifier errors						~
		lae tree						2
· Status		ize margin curve						1
OK.		ize threshold curve					Log	-400° ×0
		Benefit analysis		·				
 A second sec second second sec	VISU8	Aze cost curve		·				

VALIDATION :

MCET

PROGRAM 8.

Aim: Obtain the association rules using WEKA

Choose a data set

Iris data set

😤 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gen	erate Undo Edit Save
/ Filter	
Choose None	Apply
Current relation	Selected attribute
Relation: iris Instances: 150 Attributes: 5	Name: sepallength Type: Numeric Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Attributes	Statistic Value
	Minimum 4.3
All None Invert Pattern	Maximum 7.9
	Mean 5.843
No. Name	StdDev 0.828
1 sepallength	
2 sepalwidth	
3 petallength	
4 petalwidth 5 class	Class: class (Nom) Visualize All
	,
	34
	3028
	28
	(5.843, 6.357)
	16
	10
	7
Remove	
	4.3 6.1 7.9
 Status 	
ΟK	Log 🛷 ×0

Click on classify and choose ZeroR

📚 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Vi Classifier	sualize
weka Classifiers Classifiers Iszy Issocial Iszy Issocial I	ier output
	'
Status OK	Log ×0

🍧 Weka Explorer		- 7 🛛			
Preprocess Classify Cluster Associate Set	vlect attributes Visualize				
Classifier					
Choose ZeroR					
Test options	Classifier output				
O Use training set	=== Run information ===	^			
O Supplied test set Set					
Cross-validation Folds 10	Scheme: weka.classifiers.rules.ZeroR Belation: iris				
O Percentage split % 66	Instances: 150				
More options	Attributes: 5				
More options	sepallength				
Nom) class	sepalwidth petallength				
(Nom) class	petallength petalwidth				
Start Stop					
Result list (right-click for options)	Test mode: 10-fold cross-validation				
10.40.01 - rules.ZeroR					
TU40.01 -TUESZEION	Classifier model (full training set)				
	ZeroR predicts class value: Iris-setosa				
	Time taken to build model: 0 seconds				
	Stratified cross-validation				
		_			
	Correctly Classified Instances 50 33.3333 %				
	Incorrectly Classified Instances 100 66.6667 %				
	Kappe statistic 0 Mean absolute error 0.4444				
	Root mean squared error 0.4714				
	Relative absolute error 100 %				
	Root relative squared error 100 %				
	Total Number of Instances 150				
	Detailed Accuracy By Class	~			
· Status					
OK		Log 🛷 ×0			

VALIDATION :

🈤 Weka Explorer		- 2 🛛				
Preprocess Classify Cluster Associate Sel	ect attributes Visualize					
Classifier						
Choose ZeroR						
Test options	Oactifier output					
O Use training set	ZeroR predicts class value: Iris-setosa	~				
Supplied test set Set	Time taken to build model: O seconds					
Cross-validation Folds 10 Percentage split % 66						
Nore options	Correctly Classified Instances 50 33.333 % Incorrectly Classified Instances 100 66.6667 % Kappa statistic 0					
Start Stop	Mean absolute error 0.4444 Root mean squared error 0.4714 Relative absolute error 100					
10:40:01 - rules ZeroR	Root relative squared error 100 % Total Number of Instances 150					
	Detailed Accuracy By Class					
	TP Bate FP Fate Precision Recall F-Heavue ROC Area Class 1 1 0.533 1 0.5 0.5 Iris-setosa 0 0 0 0 0 0 0.5 Iris-versicolor 0 0 0 0 0 0 0.5 Iris-virginica Weighted Arg. 0.333 0.111 0.333 0.167 0.5 == Confusion Matrix === a b c < classified as 50 0 0 a - Iris-setosa					
- Status OK	50 0 0 b = Iris-versionlor 50 0 0 c = Iris-virginica	• • • • •				

PROGRAM 9.

Aim: Perform Data Transformations using an ETL Tool.

Description: Overview of ETL in Data Warehouses

You need to load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To do this, data from one or more operational systems needs to be extracted and copied into the data warehouse. The challenge in data warehouse environments is to integrate, rearrange and consolidate large volumes of data over many systems, thereby providing a new unified information base for business intelligence.

The process of extracting data from source systems and bringing it into the data warehouse is commonly called **ETL**, which stands for extraction, transformation, and loading. Note that ETL refers to a broad process, and not three well-defined steps. The acronym ETL is perhaps too simplistic, because it omits the transportation phase and implies that each of the other phases of the process is distinct. Nevertheless, the entire process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not necessarily unique to data warehouse environments: a wide variety of proprietary applications and database systems are the IT backbone of any enterprise. Data has to be shared between applications or systems, trying to integrate them, giving at least two applications the same picture of the world. This data sharing was mostly addressed by mechanisms similar to what we now call ETL.

ETL Tools for Data Warehouses

Designing and maintaining the ETL process is often considered one of the most difficult and resource-intensive portions of a data warehouse project. Many data warehousing projects use ETL tools to manage this process. Oracle Warehouse Builder, for example, provides ETL capabilities and takes advantage of inherent database abilities. Other data warehouse builders create their own ETL tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other tasks that are important for a successful ETL implementation as part of the daily operations of the data warehouse and its support for further enhancements. Besides the support for designing a data warehouse and the data flow, these tasks are typically addressed by ETL tools such as Oracle Warehouse Builder.

Oracle is not an ETL tool and does not provide a complete solution for ETL. However, Oracle does provide a rich set of capabilities that can be used by both ETL tools and customized ETL solutions. Oracle offers techniques for transporting data between Oracle databases, for transforming large volumes of data, and for quickly loading new data into a data warehouse.

Introduction to Extraction Methods in Data Warehouses

The extraction method you should choose is highly dependent on the source system and also from the business needs in the target data warehouse environment. Very often, there is no possibility to add additional logic to the source systems to enhance an incremental extraction of data due to the performance or the increased workload of these systems. Sometimes even the customer is not allowed to add anything to an out-of-the-box application system.

Logical Extraction Methods

There are two types of logical extraction:

- Full Extraction
- Incremental Extraction

Full Extraction

The data is extracted completely from the source system. Because this extraction reflects all the data currently available on the source system, there's no need to keep track of changes to the data source since the last successful extraction. The source data will be provided as-is and no additional logical information (for example, timestamps) is necessary on the source site. An example for a full extraction may be an export file of a distinct table or a remote SQL statement scanning the complete source table.

Incremental Extraction

At a specific point in time, only the data that has changed since a well-defined event back in history will be extracted. This event may be the last time of extraction or a more complex business event like the last booking day of a fiscal period. To identify this delta change there must be a possibility to identify all the changed information since this specific time event. This information can be either provided by the source data itself such as an application column, reflecting the last-changed timestamp or a change table where an appropriate additional mechanism keeps track of the changes besides the originating transactions. In most cases, using the latter method means adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the extraction process. Instead, entire tables from the source systems are extracted to the data warehouse or staging area, and these tables are compared with a previous extract from the source system to identify the changed data. This approach may not have significant impact on the source systems, but it clearly can place a considerable burden on the data warehouse processes, particularly if the data volumes are large.

Physical Extraction Methods

Depending on the chosen logical extraction method and the capabilities and restrictions on the source side, the extracted data can be physically extracted by two mechanisms. The data can either be extracted online from the source system or from an offline structure. Such an offline structure might already exist or it might be generated by an extraction routine.

There are the following methods of physical extraction:

- Online Extraction
- Offline Extraction

Online Extraction

The data is extracted directly from the source system itself. The extraction process can connect directly to the source system to access the source tables themselves or to an intermediate system

that stores the data in a preconfigured manner (for example, snapshot logs or change tables). Note that the intermediate system is not necessarily physically different from the source system.

With online extractions, you need to consider whether the distributed transactions are using original source objects or prepared source objects.

Offline Extraction

The data is not extracted directly from the source system but is staged explicitly outside the original source system. The data already has an existing structure (for example, redo logs, archive logs or transportable tablespaces) or was created by an extraction routine.

You should consider the following structures:

• Flat files

Data in a defined, generic format. Additional information about the source object is necessary for further processing.

• Dump files

Oracle-specific format. Information about the containing objects may or may not be included, depending on the chosen utility.

• Redo and archive logs

Information is in a special, additional dump file.

• Transportable tablespaces

Extracting into Flat Files Using SQL*Plus

The most basic technique for extracting data is to execute a SQL query in SQL*Plus and direct the output of the query to a file. For example, to extract a flat file, country_city.log, with the pipe sign as delimiter between column values, containing a list of the cities in the US in the tables countries and customers, the following SQL script could be run:

SET echo off SET pagesize 0 SPOOL country_city.log

SELECT distinct t1.country_name ||'|'|| t2.cust_city

FROM countries t1, customers t2 WHERE t1.country_id = t2.country_id

AND t1.country_name= 'United States of America';

SPOOL off

The exact format of the output file can be specified using SQL*Plus system variables.

This extraction technique offers the advantage of storing the result in a customized format. Note that, using the external table data pump unload facility, you can also extract the result of an arbitrary SQL operation. The example previously extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent SQL*Plus sessions, each session running a separate query representing a different portion of the data to be extracted. For example, suppose that you wish to extract data from an orders table, and that the orders table has been range partitioned by month, with partitions orders_jan1998, orders_feb1998, and so on. To extract a single year of data from the orders table, you could initiate 12 concurrent SQL*Plus sessions, each extracting a single partition. The SQL script for one such session could be:

SPOOL order_jan.dat

SELECT * FROM orders PARTITION (orders_jan1998);

SPOOL OFF

Even if the orders table is not partitioned, it is still possible to parallelize the extraction either based on logical or physical criteria. The logical method is based on logical ranges of column values, for example:

SELECT ... WHERE order_date

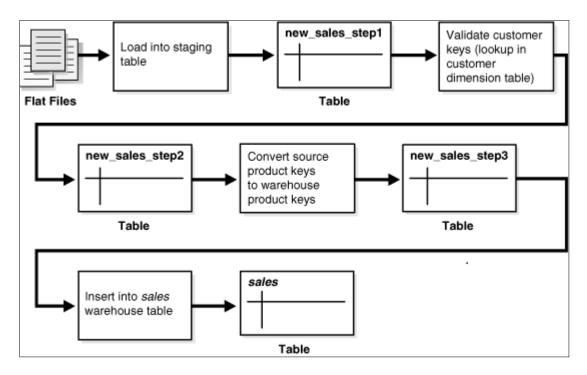
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary, it is possible to identify the Oracle Database data blocks that make up the orders table. Using this information, you could then derive a set of rowid-range queries for extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN value1 and value2;

Parallelizing the extraction of complex SQL queries is sometimes possible, although the process of breaking a single complex query into multiple components can be challenging. In particular, the coordination of independent processes to guarantee a globally consistent view can be difficult. Unlike the SQL*Plus approach, using the external table data pump unload functionality provides transparent parallel capabilities.

Note that all parallel techniques can use considerably more CPU and I/O resources on the source system, and the impact on the source system should be evaluated before parallelizing any extraction technique.


Transformation Flow

From an architectural perspective, you can transform your data in two ways:

- Multistage Data Transformation
- Pipelined Data Transformation

Multistage Data Transformation

The data transformation logic for most data warehouses consists of multiple steps. For example, in transforming new records to be inserted into a sales table, there may be separate logical transformation steps to validate each dimension key.

When using Oracle Database as a transformation engine, a common strategy is to implement each transformation as a separate SQL operation and to create a separate, temporary staging table (such as the tables new_sales_step1 and new_sales_step2 to store the incremental results for each step. This load-then-transform strategy also provides a natural checkpointing scheme to the entire transformation process, which enables the process to be more easily monitored and restarted. However, a disadvantage to multistaging is that the space and time requirements increase.

It may also be possible to combine many simple logical transformations into a single SQL statement or single PL/SQL procedure. Doing so may provide better performance than performing each step independently, but it

Loading a Data Warehouse with SQL*Loader

SQL*Loader is used to move data from flat files into an Oracle data warehouse. During this data load, SQL*Loader can also be used to implement basic data transformations. When using direct-path SQL*Loader, basic data manipulation, such as datatype conversion and simple NULL handling, can be automatically resolved during the data load. Most data warehouses use direct-path loading for performance reasons.

The conventional-path loader provides broader capabilities for data transformation than a directpath loader: SQL functions can be applied to any column as those values are being loaded. This provides a rich capability for transformations during the data load. However, the conventional-path loader is slower than direct-path loader. For these reasons, the conventional-path loader should be considered primarily for loading and transforming smaller amounts of data. The following is a simple example of a SQL*Loader controlfile to load data into the sales table of the sh sample schema from an external file sh_sales.dat. The external flat file sh_sales.dat consists of sales transaction data, aggregated on a daily level. Not all columns of this external file are loaded into sales. This external file will also be used as source for loading the second fact table of the sh sample schema, which is done using an external table:

The following shows the control file (sh_sales.ctl) loading the sales table:

LOAD DATA INFILE sh_sales.dat APPEND INTO TABLE sales

FIELDS TERMINATED BY "|"

(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID, QUANTITY_SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

\$ sqlldr control=sh_sales.ctl direct=true

Username:

Password:

Viva Voce

- 1) Define ETL
- 2) Define Data Warehouse
- 3) Define Staging Area
- 4) Define tablespace
- 5) What is SQL * Loader

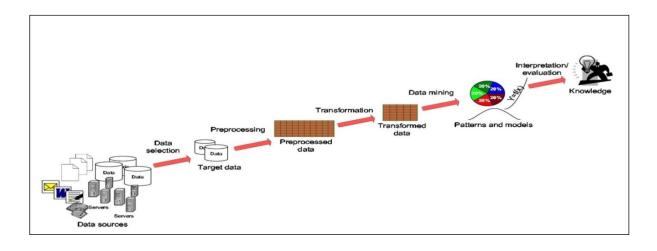
PROGRAM 10.

Aim: A small case study on involving all stages of KDD

Description:

KDD Process is the process of using data mining methods (algorithms) to extract (identify) what is deemed knowledge according to the specifications of measures and thresholds, using database F along with any required preprocessing, subsampling, and transformation of F."

KDD:


- In a multistep process many decisions are made by the user (domain expert):
- Iterative and interactive loops between any two steps are possible
- Usually the most focus is on the DM step, but other steps are of considerable importance for the successful application of KDD in practice

GOALS:

- Verification of user's hypothesis (this against the EDA principle...)
- Autonomous discovery of new patterns and models
- Prediction of future behavior of some entities
- Description of interesting patterns and models

STEPS OF DM:

- 1. Domain understanding and goal setting
- 2. Creating a target data set
- 3. Data cleaning and preprocessing
- 4. Data reduction and projection
- 5. Data mining
 - Choosing the data mining task
 - Choosing the data mining algorithm(s)
 - Use of data mining algorithms
- 6. Interpretation of mined patterns
- 7. Utilization of discovered knowledge

1) Domain analysis

- Development of domain understanding
- Discovery of relevant prior knowledge
- Definition of the goal of the knowledge discovery

2) Data selection

- Selection and integration of the target data from possibly many different and heterogeneous sources
- Interesting data may exist, e.g., in relational databases, document collections, e-mails, photographs, video clips, process database, customer transaction database, web logs etc.
- Focus on the correct subset of variables and data samples
 - E.g., customer behavior in a certain country, relationship between items purchased and customer income and age

3) Data cleaning and preprocessing

- Dirty data can confuse the mining procedures and lead to unreliable and invalid outputs
- Complex analysis and mining on a huge amount of data may take a very long time
- Preprocessing and cleaning should improve the quality of data and mining results by enhancing the actual mining process
- The actions to be taken includes
 - Removal of noise or outliers
 - Collecting necessary information to model or account for noise
 - Using prior domain knowledge to remove the inconsistencies and duplicates from the data
 - Choice or usage of strategies for handling missing data fields

4) Data reduction and projection

- Data transformation techniques
 - Smoothing (binning, clustering, regression etc.)
 - Aggregation (use of summary operations (e.g., averaging) on data)
 - Generalization (primitive data objects can be replaced by higher-level concepts)
 - Normalization (min-max-scaling, z-score)
 - Feature construction from the existing attributes (PCA, MDS)
- Data reduction techniques are applied to produce reduced representation of the data (smaller volume that closely maintains the integrity of the original data)
- Aggregation
 - Dimension reduction (Attribute subset selection, PCA, MDS,...)
 - Compression (e.g., wavelets, PCA, clustering,...)
 - Numerosity reduction
 - parametric models: regression and log-linear models
 - non-parametric models: histograms, clustering, sampling...
 - Discretization (e.g., binning, histograms, cluster analysis,...)
 - Concept hierarchy generation (numeric value of "age" to a higher level concept "young, middle-aged, senior")

5) Choice of data mining task

- Define the task for data mining
 - Exploration/summarization
 - Summarizing statistics (mean, median, mode, std,..)
 - Class/concept description
 - Explorative data analysis
 - Graphical techniques, low-dimensional plots,...
 - Predictive
 - Classification or regression
 - Descriptive
 - Cluster analysis, dependency modelling, change and outlier detection

6) Choosing the DM algorithm(s)

- Select the most appropriate methods to be used for the model and pattern search
- Matching the chosen method with the overall goal of the KDD process (necessites communication between the end user and method specialists)
- Note that this step requires understanding in many fields, such as computer science, statistics, machine learning, optimization, etc.

7) Use of data mining algorithms

- Application of the chosen DM algorithms to the target data set
- Search for the patterns and models of interest in a particular representational form or a set of such representations
- Classification rules or trees, regression models, clusters, mixture models...
- Should be relatively automatic
- Generally DM involves:
 - Establish the structural form (model/pattern) one is interested
 - Estimate the parameters from the available data
 - Interprete the fitted models
- 8) Interpretation/evaluation
- The mined patterns and models are interpreted
- The results should be presented in understandable form
- Visualization techniques are important for making the results useful mathematical models or text type descriptions may be difficult for domain experts
- Possible return to any of the previous step

ADDITIONAL PROGRAMS

Introduction and Basics of R Programming:

How to install R Packages?

The sheer power of R lies in its incredible packages. In R, most data handling tasks can be performed in 2 ways: Using R packages and R base functions. In this tutorial, I'll also introduce you with the most handy and powerful R packages. To install a package, simply type:

```
install.packages("package name")
```

As a first time user, a pop might appear to select your CRAN mirror (country server), choose accordingly and press OK.

Note: You can type this either in console directly and press 'Enter' or in R script and click 'Run'.

Basic Computations in R

Let's begin with basics. To get familiar with R coding environment, start with some basic calculations. R console can be used as an interactive calculator too. Type the following in your console:

> 2 + 3
> 5
> 6 / 3
> 2
> (3*8)/(2*3)
> 4
> log(12)
> 1.07
> sqrt (121)
> 11

Similarly, you can experiment various combinations of calculations and get the results. In case, you want to obtain the previous calculation, this can be done in two ways. First, click in R console, and press 'Up / Down Arrow' key on your keyboard. This will activate the previously executed commands. Press Enter.

But, what if you have done too many calculations ? It would be too painful to scroll through every command and find it out. In such situations, creating variable is a helpful way.

In R, you can create a variable using <- or = sign. Let's say I want to create a variable x to compute the sum of 7 and 8. I'll write it as:

> x <- 8 + 7 > x > 15

Once we create a variable, you no longer get the output directly (like calculator), unless you call the variable in the next line. Remember, variables can be alphabets, alphanumeric but not numeric. You can't create numeric variables.

2. Essentials of R Programming

Understand and practice this section thoroughly. This is the building block of your R programming knowledge. If you get this right, you would face less trouble in debugging.

R has five basic or 'atomic' classes of objects. Wait, what is an object ?

Everything you see or create in R is an object. A vector, matrix, data frame, even a variable is an object. R treats it that way. So, R has 5 basic classes of objects. This includes:

- 1. Character
- 2. Numeric (Real Numbers)
- 3. Integer (Whole Numbers)
- 4. Complex
- 5. Logical (True / False)

Since these classes are self-explanatory by names, I wouldn't elaborate on that. These classes have attributes. Think of attributes as their 'identifier', a name or number which aptly identifies them. An object can have following attributes:

- 1. names, dimension names
- 2. dimensions
- 3. class
- 4. length

Attributes of an object can be accessed using *attributes()* function. More on this coming in following section.

Let's understand the concept of object and attributes practically. The most basic object in R is known as vector. You can create an empty vector using *vector()*. Remember, a vector contains object of same class.

For example: Let's create vectors of different classes. We can create vector using c() or concatenate command also.

> a <- c(1.8, 4.5) #numeric > b <- c(1 + 2i, 3 - 6i) #complex > d <- c(23, 44) #integer > e <- vector("logical", length = 5)</pre>

Similarly, you can create vector of various classes.

Data Types in R

R has various type of 'data types' which includes vector (numeric, integer etc), matrices, data frames and list. Let's understand them one by one.

Vector: As mentioned above, a vector contains object of same class. But, you can mix objects of different classes too. When objects of different classes are mixed in a list, coercion occurs. This effect causes the objects of different types to 'convert' into one class. For example:

> qt <- c("Time", 24, "October", TRUE, 3.33) #character

> ab <- c(TRUE, 24) #numeric

```
> cd <- c(2.5, "May") #character</p>
```

To check the class of any object, use *class("vector name")* function.

```
> class(qt)
```

"character"

To convert the class of a vector, you can use *as*. command.

```
> bar <- 0:5
> class(bar)
> "integer"
> as.numeric(bar)
> class(bar)
> "numeric"
> as.character(bar)
> class(bar)
```

> "character"

Similarly, you can change the class of any vector. But, you should pay attention here. If you try to convert a "character" vector to "numeric", NAs will be introduced. Hence, you should be careful to use this command.

List: A list is a special type of vector which contain elements of different data types. For example:

```
> my_list <- list(22, "ab", TRUE, 1 + 2i)
> my_list
[[1]]
[1] 22
[[2]]
[1] "ab"
[[3]]
[1] TRUE
[[4]]
[1] 1+2i
```

As you can see, the output of a list is different from a vector. This is because, all the objects are of different types. The double bracket [[1]] shows the index of first element and so on. Hence, you can easily extract the element of lists depending on their index. Like this:

```
> my_list[[3]]
> [1] TRUE
```

You can use [] single bracket too. But, that would return the list element with its index number, instead of the result above. Like this:

> my_list[3] > [[1]] [1] TRUE

Matrices: When a vector is introduced with *row* and *column* i.e. a dimension attribute, it becomes a matrix. A matrix is represented by set of rows and columns. It is a 2 dimensional data structure. It consist of elements of same class. Let's create a matrix of 3 rows and 2 columns:

```
> my_matrix <- matrix(1:6, nrow=3, ncol=2)
> my_matrix
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> dim(my_matrix)
[1] 3 2
> attributes(my_matrix)
$dim
[1] 3 2
```

As you can see, the dimensions of a matrix can be obtained using

either *dim()* or *attributes()* command. To extract a particular element from a matrix, simply use the index shown above. For example(try this at your end):

> my_matrix[,2] #extracts second column

> my_matrix[,1] #extracts first column

> my_matrix[2,] #extracts second row

> my_matrix[1,] #extracts first row

As an interesting fact, you can also create a matrix from a vector. All you need to do is, assign dimension *dim()* later. Like this:

> age <- c(23, 44, 15, 12, 31, 16)
> age
[1] 23 44 15 12 31 16
> dim(age) <- c(2,3)
> age
[,1] [,2] [,3]

[1,] 23 15 31
[2,] 44 12 16
> class(age)
[1] "matrix"

You can also join two vectors using *cbind()* and *rbind()* functions. But, make sure that both vectors have same number of elements. If not, it will return NA values.

> x <- c(1, 2, 3, 4, 5, 6) > y <- c(20, 30, 40, 50, 60) > cbind(x, y) > cbind(x, y) x y [1,] 1 20 [2,] 2 30 [3,] 3 40 [4,] 4 50 [5,] 5 60 [6,] 6 70 > class(cbind(x, y)) [1] "matrix"

Data Frame: This is the most commonly used member of data types family. It is used to store tabular data. It is different from matrix. In a matrix, every element must have same class. But, in a data frame, you can put list of vectors containing different classes. This means, every column of a data frame acts like a list. Every time you will read data in R, it will be stored in the form of a data frame. Hence, it is important to understand the majorly used commands on data frame:

```
> df <- data.frame(name = c("ash","jane","paul","mark"), score = c(67,56,87,91))
```

> df
name score
1 ash 67
2 jane 56
3 paul 87
4 mark 91

> dim(df)

[1] 4 2

> str(df)
'data.frame': 4 obs. of 2 variables:
\$ name : Factor w/ 4 levels "ash","jane","mark",..: 1 2 4 3
\$ score: num 67 56 87 91
> nrow(df)
[1] 4
> ncol(df)
[1] 2

Let's understand the code above. *df* is the name of data frame. *dim()* returns the dimension of data frame as 4 rows and 2 columns. *str()* returns the structure of a data frame i.e. the list of variables stored in the data frame. *nrow()* and *ncol()* return the number of rows and number of columns in a data set respectively.

Here you see "name" is a factor variable and "score" is numeric. In data science, a variable can be categorized into two types: Continuous and Categorical.

Continuous variables are those which can take any form such as 1, 2, 3.5, 4.66 etc. **Categorical variables** are those which takes only discrete values such as 2, 5, 11, 15 etc. In R, categorical values are represented by factors. In df, name is a factor variable having 4 unique levels. Factor or categorical variable are specially treated in a data set. Similarly, you can find techniques to deal with continuous variables here.

Let's now understand the concept of **missing values** in R. This is one of the most painful yet crucial part of predictive modelling. You must be aware of all techniques to deal with them. The complete explanation on such techniques is provided here.

Missing values in R are represented by *NA* and *NaN*. Now we'll check if a data set has missing values (using the same data frame *df*).

> df[1:2,2] <- NA #injecting NA at 1st, 2nd row and 2nd column of df
> df
name score
1 ash NA
2 jane NA
3 paul 87
4 mark 91
> is.na(df) #checks the entire data set for NAs and return logical output
name score
[1,] FALSE TRUE
[2,] FALSE TRUE

[3,] FALSE FALSE
[4,] FALSE FALSE
> table(is.na(df)) #returns a table of logical output
FALSE TRUE
6 2
> df[!complete.cases(df),] #returns the list of rows having missing values
name score
1 ash NA

2 jane NA

Missing values hinder normal calculations in a data set. For example, let's say, we want to compute the mean of score. Since there are two missing values, it can't be done directly. Let's see:

mean(df\$score)

```
[1] NA> mean(df$score, na.rm = TRUE)[1] 89
```

The use of na.rm = TRUE parameter tells R to ignore the NAs and compute the mean of remaining values in the selected column (score). To remove rows with NA values in a data frame, you can use *na.omit*:

```
> new_df <- na.omit(df)
> new_df
```

name score

3 paul 87

4 mark 91

Control Structures in R

As the name suggest, a control structure 'controls' the flow of code / commands written inside a function. A function is a set of multiple commands written to automate a repetitive coding task. For example: You have 10 data sets. You want to find the mean of 'Age' column present in every data set. This can be done in 2 ways: either you write the code to compute mean 10 times or you simply create a function and pass the data set to it.

Let's understand the control structures in R with simple examples:

if, else – This structure is used to test a condition. Below is the syntax:

```
if (<condition>){
##do something
```

} else {

##do something

}

Example

```
#initialize a variable
N <- 10
#check if this variable * 5 is > 40
if (N * 5 > 40){
    print("This is easy!")
} else {
    print ("It's not easy!")
}
[1] "This is easy!"
```

for – This structure is used when a loop is to be executed fixed number of times. It is commonly used for iterating over the elements of an object (list, vector). Below is the syntax:

for (<search condition>){

#do something

}

Example

#initialize a vector

```
y <- c(99,45,34,65,76,23)
```

#print the first 4 numbers of this vector

```
for(i in 1:4){
```

print (y[i])

}

[1] 99

[1] 45

[1] 34

```
[1] 65
```

while – It begins by testing a condition, and executes only if the condition is found to be true. Once the loop is executed, the condition is tested again. Hence, it's necessary to alter the condition such that the loop doesn't go infinity. Below is the syntax:

#initialize a condition
Age <- 12
#check if age is less than 17
while(Age < 17){</pre>

print(Age)

Age <- Age + 1 #Once the loop is executed, this code breaks the loop

}

[1] 12

[1] 13

[1] 14

[1] 15

[1] 16

There are other control structures as well but are less frequently used than explained above. Those structures are:

- 1. repeat It executes an infinite loop
- 2. break It breaks the execution of a loop
- 3. next It allows to skip an iteration in a loop
- 4. return It help to exit a function

Note: If you find the section 'control structures' difficult to understand, not to worry. R is supported by various packages to compliment the work done by control structures.

Useful R Packages

Out of ~7800 packages listed on <u>CRAN</u>, I've listed some of the most powerful and commonly used packages in predictive modeling in this article. Since, I've already explained the method of installing packages, you can go ahead and install them now. Sooner or later you'll need them.

Importing Data: R offers wide range of packages for importing data available in any format such as .txt, .csv, .json, .sql etc. To import large files of data quickly, it is advisable to install and use *data.table*, *readr*, *RMySQL*, *sqldf*, *jsonlite*.

Data Visualization: R has in built plotting commands as well. They are good to create simple graphs. But, becomes complex when it comes to creating advanced graphics. Hence, you should install *ggplot2*.

Data Manipulation: R has a fantastic collection of packages for data manipulation. These packages allows you to do basic & advanced computations quickly. These packages are *dplyr*, *plyr*, *tidyr*, *lubridate*, *stringr*. **Modeling / Machine Learning:** For modeling, *caret* package in R is powerful enough to cater to every need for creating machine learning model. However, you can install packages algorithms wise such as *randomForest*, *rpart*, *gbm* etc

PROGRAM 11.

Aim : Data Manipulation in R.

Description:

Let's call it as, the advanced level of data exploration. In this section we'll practically learn about feature engineering and other useful aspects.

Feature Engineering: This component separates an intelligent data scientist from a technically enabled data scientist. You might have access to large machines to run heavy computations and algorithms, but the power delivered by new features, just can't be matched. We create new variables to extract and provide as much 'new' information to the model, to help it make accurate predictions.

If you have been thinking all this time, great. But now is the time to think deeper. Look at the data set and ask yourself, what else (factor) could influence Item_Outlet_Sales ? Anyhow, the answer is below.

1. **Count of Outlet Identifiers** – There are 10 unique outlets in this data. This variable will give us information on count of outlets in the data set. More the number of counts of an outlet, chances are more will be the sales contributed by it.

> library(dplyn > a <- combi% group_ tally()		
> head(a)		
Source: local data frame [6 x 2]		
Outlet_Identifier n		
(fctr) (in	it)	
1 OUT010	925	
2 OUT013	1553	
3 OUT017	1543	
4 OUT018	1546	
5 OUT019	880	
6 OUT027	1559	
> names(a)[2] <- "Outlet_Count"		

> combi <- full_join(a, combi, by = "Outlet_Identifier")</pre>

As you can see, dplyr package makes data manipulation quite effortless. You no longer need to write long function. In the code above, I've simply stored the new data frame in a variable *a*. Later, the new column *Outlet_Count* is added in our original 'combi' data set..

2. **Count of Item Identifiers** – Similarly, we can compute count of item identifiers too. It's a good practice to fetch more information from unique ID variables using their count. This will help us to understand, which outlet has maximum frequency.

> b <- combi%>% group_by(Item_Identifier)%>% tally() > names(b)[2] <- "Item_Count"</pre> > head (b) Item Identifier Item Count (fctr) (int) 1 DRA12 9 2 DRA24 10 10 3 DRA59 4 DRB01 8 5 DRB13 9 6 DRB24 8

> combi <- merge(b, combi, by = "Item_Identifier")</pre>

3. **Outlet Years** – This variable represent the information of existence of a particular outlet since year 2013. Why just 2013? You'll find the answer in problem statement <u>here</u>. My hypothesis is, older the outlet, more footfall, large base of loyal customers and larger the outlet sales.

> c <- combi%>%		
select(Outlet_Establishment_Year)%>%		
<pre>mutate(Outlet_Year = 2013 - combi\$Outlet_Establishment_Year)</pre>		
> head(c)		
Outlet_Establishment_Year Outlet_Year		
1 1999 14		
2 2009 4		
3 1999 14		
4 1998 15		
5 1987 26		
6 2009 4		
<pre>> combi <- full_join(c, combi)</pre>		

This suggests that outlets established in 1999 were 14 years old in 2013 and so on.

4. **Item Type New** – Now, pay attention to *Item_Identifiers*. We are about to discover a new trend. Look carefully, there is a pattern in the identifiers starting with "FD", "DR", "NC". Now, check the corresponding *Item_Types* to these identifiers in the data set. You'll discover, items corresponding to "DR", are mostly eatables. Items corresponding to "FD", are drinks. And, item corresponding to "NC", are products which can't be consumed, let's call them non-consumable. Let's extract these variables into a new variable representing their counts.

Here I'll use *substr()*, *gsub()* function to extract and rename the variables respectively.

> q <- substr(combi\$Item_Identifier,1,2)
> q <- gsub("FD","Food",q)
> q <- gsub("DR","Drinks",q)
> q <- gsub("NC","Non-Consumable",q)</pre>

> table(q)
Drinks Food Non-Consumable
1317 10201 2686

Let's now add this information in our data set with a variable name 'Item_Type_New.

> combi\$Item_Type_New <- q</pre>

I'll leave the rest of feature engineering intuition to you. You can think of more variables which could add more information to the model. But make sure, the variable aren't correlated. Since, they are emanating from a same set of variable, there is a high chance for them to be correlated. You can check the same in R using cor() function.

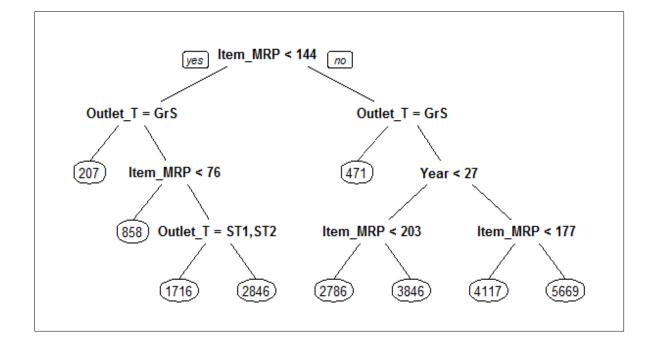
PROGRAM 12. Classification in R.

Aim: Decision Trees

Description:

Before you start, I'd recommend you to glance through the basics of decision tree algorithms. To understand what makes it superior than linear regression, In R, decision tree algorithm can be implemented using *rpart package*. In addition, we'll use *caret package* for doing cross validation.

Cross validation is a technique to build robust models which are not prone to overfitting.


In R, decision tree uses a complexity parameter (cp). It measures the tradeoff between model complexity and accuracy on training set. A smaller cp will lead to a bigger tree, which might overfit the model. Conversely, a large cp value might underfit the model. Underfitting occurs when the model does not capture underlying trends properly. Let's find out the optimum cp value for our model with 5 fold cross validation.

Program:

#loading required libraries > library(rpart) > library(e1071) > library(rpart.plot) > library(caret) #setting the tree control parameters > fitControl <- trainControl(method = "cv", number = 5) > cartGrid <- expand.grid(.cp=(1:50)*0.01) #decision tree > tree_model <- train(Item_Outlet_Sales ~ ., data = new_train, method = "rpart", trControl = fitControl, tuneGrid = cartGrid) > print(tree_model)

The final value for cp = 0.01. You can also check the table populated in console for more information. The model with cp = 0.01 has the least RMSE. Let's now build a decision tree with 0.01 as complexity parameter.

> main_tree <- rpart(Item_Outlet_Sales ~ ., data = new_train, control = rpart.control(cp=0.01))
> prp(main_tree)

Here is the tree structure of our model. If you have gone through the basics, you would now understand that this algorithm has marked Item_MRP as the most important variable (being the root node).

Let's check the RMSE of this model and see if this is any better than regression.

> pre_score <- predict(main_tree, type = "vector")
> rmse(new_train\$Item_Outlet_Sales, pre_score)
[1] 1102.774